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Abstract 
In the present paper we prove fixed point and common fixed point theorems in two self mappings  satisfy quasi 

type contraction.   
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Introduction and Preliminaries  

Vector metric space, which is introduced in [6] by motivated this paper [7] , is generalisation of metric 

space ,where the metric is Riesz space valued .Actually in both of them , the metric map is vector space valued. 

One of the difference between our metric definition and Huang-Zhang’s metric definition is that there exist a 

cone due to the natural existence of ordering on Riesz space .The other difference is that our definition 

eliminates the requirement for the vector space to have a topological structure. 

  A Riesz space (or a vector lattice) is an ordered vector space and alattice. Let E be a Riesz space with the 

positive E� =  �x ∈ E ∶ x ≥ 0� . If �a�� is a decreasing sequence in E such that inf a� = a, we write a� ↓ a 

Definition 1. The Riesz space E is said to be Archimedean if   
�� a ↓ 0 holds for every a ∈ E�. 

Definition 2.  A sequence (bn) is said to order convergent (or o-convergent) to b, if there is a sequence (an) in E 

satisfying  a� ↓ 0 and |b� − (b|( ≤  a�for all n, and written b� *+ b or 

o-limb� = b , where |a| = sup�a, −a� for any a ∈ E. 
Definition3.  A sequence (bn) is said to order Cauchy (or o-cauchy) if there exists a sequence (an) in E such that a� ↓ 0 and |b�-b���| ≤ a� holds for n and p. 
Definition4.   The Riesz space E is said to be o-cauchy complete if every o-cauchy sequence is o-convergent. 

VECTOR METRIC SPACES 

Definition 4.Let X be anon empty set and E be a Riesz space .The function d ∶ X × X + E is said to be avector metric  (or E-metric) if it is satisfying the following properties : 

(i) d1x, y2 = 0 if and only if x = y. 1ii2d1x, y2 ≤ d1x, z2 + d1y, z2 

For all x, y, z ∈ X. Also the triple (X , d ,E) (briefly X with the default parameters omitted) is said to be vector 

metric space. . 

Main Results 

Recently ,many authors have studied on common fixed point theorems for weakly compatible pairs (see [1], [3], 

[4], [8], [9]). Let T and S be self maps of a set X. if y = Tx = Sx for some , x ∈ X, then y is said to be a point of coincidence and xis said to be coincidence point  of T and S.  If T and S are weakly compatible ,that is they are commuting at their coincidence point on X, then 

the point of coincidence y is the unique common fixed point of these maps [1]. 

Theorem 1 :Let X be a vector space with E is Archimedean. Suppose the mappings S, T ∶ X × X +X satis7ies the following conditions 1i2for all x, y ∈ X,   d1Tx, Ty2 ≤ ku1x, y2                                                                    (1) where k ∈ 90,12is a constant and  u1x, y2 ∈ ;d1Sx, Sy2, d1Sx, Tx2, d1Sy, Ty2, d1Sx, Ty2, d1Sy, Tx2, 12 9d1Sx, Tx2 + d1Sy, Tx2=> 

(ii) T1x2 ⊆ S1x2 

 (iii) S1x2 or T1x2is a E-Complete subspace of x. 

Then T and S have a unique fixed point of coincidence in X . Moreover, if S and Tare weakly compatible ,then 

they have a unique common fixed point in X. 

Proof : Let x@, x� ∈ X. De7ine the sequence 1x�2 by Sx��� = Tx� = y� for n ∈ N. 
We first show that  d1y� , y���2 ≤ k d1y�-�, y� 2                                                                         (2) 

For all n. we have that 
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d1y� , y���2 = d1Tx�, Tx���2 ≤ ku1x�, x���2 

Fir all n. Now we have to consider the following three  cases: 

  If u1x�, x���2 = d1y�-�, y�2 then clearly 122holds . If u1x�, x���2 = d1y� , y���2 

Then according to Remark 1 d1y� , y���2 = 0 and 122is immediate. Finally , suppose that  u1x�, x���2 = �D d1y�-�, y���2.  Then, d1y� , y���2 ≤  k2 d1y�-�, y���2 ≤  k2 d1y�-�, y�2 + 12 d1y� , y���2 

Holds , and we prove (2). 

We have  d1y� , y���2 ≤ k�d1y@, y�2 
For all n and p, dEy� , y��FG ≤ d1y� , y���2 + d1y���, y��D2 + ⋯ + d1y��F-�, y��F2         ≤ 1k� + k��� + k��D + ⋯ + k��F-�2 d1y@, y�2 dEy� , y��FG ≤ k�1 − k  d1y@, y�2 

Holds .Now since E is Archimedean then (y@) is an E-cauchy sequence. Since the range of S contains the range 

of T and the range of at least one is E-Complete , there exists a z ∈ S1X2 such that Sx� I.JKL z.  Hence there exists a sequence 1a�2in E such that a� ↓ 0 and d1Sx�, z2 ≤ a� . On the other hand , we can 7ind w ∈ X such that Sw = z. Let us show that Tw = z we have  
d(Tw, z) ≤ d1Tw, Tx�2 + d1Tx�, z2 ≤ ku1x�, w2 + a��� 

for all n . Since 

u1x�, w2 ∈  Pd1Sx�, Sw2, d1Sx�, Tx�2, d1Sw, Tw2, d1Sx�, Tw2, d1Sw, Tx�2, 12 9d1Sx�, Tw2 + d1Sw, Tx�2= Q 

At least one of the following four cases holds for all n. 

Case 1 : d1Tw, z2 ≤  d1Sx�, Sw2 + a��� ≤ a� + a��� ≤ 2a� 

Case 2 : d1Tw, z2 ≤  d1Sx�, Tx�2 + a��� ≤ d1Sx�, z2 + 2a��� ≤ 3a� 
Case 3: d1Tw, z2 ≤ kd1Sw, Tw2 + a��� ≤ kd1Tw, z2 + a� , that is  d1Tw, z2 ≤ 11 − k a� . 
Case 4 : d1Tw, z2 ≤  d1Sx�, Tw2 + a��� ≤ d1Sx�, z2 + d1Tw, z2 + 3a��� ≤ 4a� 
Case 5 : 

d1Tw, z2 ≤ kd1Sw, Tx�2 + a��� ≤ k d1Tx�, z2 + 2a��� ≤ 3a� 

Case 6 : 

d1Tw, z2 ≤ �D 9d1Sx�, Tw2 + d1Sw, Tx�2= + a��� ≤ 12 d1Sx�, Tw2 + 32 a��� 

                                                                 ≤ �D d1Sx�, z2 + �D d1Tw, z2 + TD a� ≤ 12 d1Tw, z2 + 2a�                                         That is  , d1Tw, z2  ≤ 4a� 

         Since the infimum of the sequence on the right side of last inequality are zero, then d1Tw, z2 = 0, i. e. Tw = z . Therefore , z is a point of coincidence of T and S. If z�  is another point of coincidence then there is w�  ∈ X with z�  = Tw�  = Sw�  . Now from 112, it follows that 
d (z, z�  ) =d1Tw, Tw�  2 ≤ ku1w, w�  2. 
Where 

u1w, w�  2 ∈ Ud1Sw, Sw�  2, d1Sw, Tw2, dESw� ,Tw�  G, dESw ,Tw�  GdESw� ,Tw G,12 9d1Sw, Tw�2 + d1Sw�, Tw2= V 

=  �0, d1z, z�  2�. 
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Hence d1z, z�  2 = 0 that is z = z�  . 
     If S and T are weakly compatible then it is obvious that z is unique common fixed point of T and S  by [1]. 

 

Theorem 2 : Let X be an vector metric space with E is Archimedean. Suppose the mappings S, T ∶ X +X satis7ies the following conditions 1i2 for all x, y ∈ X,                                      d1Tx, Ty2 ≤ ku1x, y2                                                                                 132 

Where k  ∈ 90,12is a constant and 

u1x, y2 ∈  Wd1Sx, Sy2, 12 9d1Sx, Tx2 + d1Sy, Ty2=, 12 9d1Sx, Ty2 + d1Sy, Tx2=,12 9d1Sx, Tx2 + d1Sx, Ty2=, 12 9d1Sy, Ty2 + d1Sy, Tx2= X 

1ii2 T1X2  ⊑ S1X2, 
 1iii2 S1X2 or T1X2 is E- Complete subspace of X. 

Then T and S have a unique point of coincidence in X. Moreover, if S and T are weakly compatible, then they 

have a unique common fixed point in X. 

Proof : Let us define the sequence 1x�2and 1y�2 as in the proof of Theorem 1 , we 7irst  
Show that d1y� , y���2 ≤ k d1y�-�, y� 2                                                                                                             (4) 

For all n. Notice that d1y� , y���2 =  d1Tx�, Tx���2 ≤ ku1x�, x���2, 
For all n. 

As in Theorem 1, we have to consider three cases:   u1x�, x���2 =  d1y�-�, y�2, u1x�, x���2 = �D 9d1y�-�, y�2 + d1y� , y���2= and  u1x�, x���2 = �D d1y�-�, y���2.  First and third have been shown in the proof of Theorem 1. Consider only the second case.  If u1x�, x���2 = 12 9d1y�-�, y�2 + d1y� , y���2=, then from 132we have 

d1y� , y���2 ≤ 12 9d1y�-�, y�2 + d1y� , y���2= ≤ k2 d1y�-�, y�2 + 12 d1y� , y���2 . 
Hence. (4) Holds. 

In the proof of this Theorem 1 we illustrate that (y�) is an E-Cauchy sequence. Then there exist z ∈ S1X2, w ∈X and 1a�2 in E such that Sw = z, d1Sx�, z2 ≤ a� and a� ↓ 0 

Now, we have to show that Tw = z. We have  d1Tw, z2 ≤ d1Tw, , Tx�2 + d1Tx�, z2 ≤ u1x�, w2 + a��� 

For all n. since 

u1x�, w2 ∈  Wd1Sx�, Sw2, 12 9d1Sx�, Tx�2 + d1Sw, Tw2=, 12 9d1Sx�, Tw2 + d1Sw, Tx�2=,12 9d1Sx�, Tx�2 + d1Sx�, Tw2=, 12 9d1Sw, Tx�2 + d1Sw, Tw2= X 

 

At least three of the five holds for all n. Consider only the cases of u1x�, w2 = 12 9d1Sx�, Tx�2 + d1Sw, Tw2=, 12 9d1Sx�, Tx�2 + d1Sx�, Tw2=, 12 9d1Sw, Tx�2 + d1Sw, Tw2= 
Because the other four cases have shown that the proof of Theorem 1 . It is satisfied that  d1Tw, z2 ≤ 12 9d1Sx�, Tx�2 + d1Sw, Tw2= + 12 9d1Sx�, Tx�2 + d1Sx�, Tw2= 

+ 12 9d1Sw, Tx�2 + d1Sw, Tw2= + a��� 

                   ≤ 12 9d1Sx�, z2 + d1Tx�, z2 + d1z, Tw2= + 12 9d1Sx�, z2 + d1Tx�, z2 + d1Sx�, z2 + d1z, Tw2= 
                           + 12 9d1Tx�, z2 + d1z, Tw2= + a��� 

                   ≤ 12 d1Sx�, z2 + 12 d1Tx�, z2 + 12 d1z, Tw2 + a��� 

                   ≤ 12 a� + 12  d1z, Tw2 + 32 a��� 
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                   d1Tw, z2 ≤ 12  d1z, Tw2 + 2a� 

That is d1z, Tw2 ≤ 4a�. Since  4a� ↓ 0 then Tw = z . Hence z is a point of coincidence  of T and S. The uniqueness of z as in the proof of Theorem 1. Also, If S and T are weakly  compatible, then it is obvious that z is unique common 7ixed point of Tand S by 91=.  
 

Theorem 3 :Let X be an vector space with E is Archimedean. Suppose the mappings  S, T: X + X satis7ies the following conditions 

        (i)  for all x , y ∈ X d1Tx, Ty2 ≤ α d1Sx, Tx2 + β d1Sy, Ty2 + γ d1Sx, Ty2 + δ d1Sy, Tx2 + η d1Sx, Sy2 + 12  μ�d1Sx, Tx2 + d1Sy, Ty2� 

(ii) T1X2 ⊆ S1X2,   
(iii) S(X) or T(X) is E-complete subspace of X 

  Then T and S have a unique point of coincidence in X .Moreover, If S and T are weakly compatible, then they 

have a unique common fixed point in X  . 

Proof :Let us define the sequence 1x�2and 1y�2 as in the proof of Theorem 1 , we have to        show that   d1y� , y���2 ≤ k d1y�-�, y�2                               (5) 

For some k ∈ 90,12 and for all n. Consider Sx��� = Tx� = y� for all n.  Then d1y� , y���2 ≤ 1α + η2d1y�-�, y�2 + β d1y� , y���2 + γd1y�-�, y���2 + 12 μ9d1y�-�, y�2 + d1y� , y���2= 
And d1y� , y���2 ≤  α d1y� , y���2 + 1β + η2d1y�-�, y�2 + δd1y�-�, y���2 

For all n. Hence, d1y� , y���2 ≤  α + β + γ + δ + 2η + μ2 − α + β + γ + δ d1y�-�, y�2 

If we choose k = 
c�d�e�f�Dg�μD-c�d�e�f  , then k ∈ 90,12and 152is hold. 

In the proof of Theorem 1 we illustrate that 1y�2  is an E-Cauchy sequence .then there exist z ∈ s1X2, w ∈X and 1a�2 in E such that Sw = z , d1Sx�, z2 ≤ a� and a� ↓ 0 . 
Let us show that Tw = z .we have  d1Tw, z2 ≤ d1Tw, Tx�2 + d1Tx�, z2 ≤ 1α + δ + μ2d1Tw, z2 + 1β + δ + η2d1Sx�, z2 + 1β + γ + 12d1Tx�, z2 ≤ 1α + δ + μ2 d1Tw, z2 + 1β + δ + η2a� + 1β + γ + 12 + a��� ≤ 1α + δ + μ2 d1Tw, z2 + 12β + γ + δ + η + 12a� 

  

That is  d1Tw, z2  ≤  1Dd�e�f�g��2�-1c�f�μ2 a� for all n. 
Then  d1Tw, z2 = 0 , i. e. Tw = z . Hence , 
Z is a point of coincidence of T and S. The uniqueness of z is easily seen. Also ,If S and T are weakly 

compatible , then it is obvious that z is unique common fixed point of T and S by [1]. 

Corrollary 1: Let X be an vector space with E is Archimedean. Suppose the mappings  S, T: X + X satis7ies the following conditions 

(i) For all x , y ∈ X ,                                                              d1Tx, Ty2 ≤ k d1Sx, Sy2                          (6) 

Where k< 1 

(ii) T1X2  ⊑ S1X2, 
(iii)  S1X2 or T1X2 is E- Complete subspace of X. 

Then T and S have a unique point of coincidence in X .Moreover, If S and T are weakly compatible, then they 

have a unique common fixed point in X  . 

      Now we give an illustrative example 

Example :Let E = ℝD with coordinatwise ordering 1since ℝD is not Archmedean with lexicogra7ical ordering ,then we can not use this ordering ), X= ℝD , d1x, y2 = 1|x − y |, α|x − y |2, α > 0, Tx =2xD + 1 and Sx = 4xD . Then , for all x, y ∈ X we have d1Tx, Ty2 = 12 d1Sx, Sy2  ≤ k d1Sx, Sy2 

For k ∈ l�D , 1m, T1X2 = 91, ∞2 ⊆ 90, ∞2 = S1X2 
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And T(X) is E-complete subspace of X. Therefore all conditions of corollary 1 are satisfied. Thus T and S have a 

unique point of coincidence in X . 
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