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Abstract 

In this paper we proof some fixed point theorem for a pair of self maps of integral type which satisfies the 

contraction mapping. 
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INTRODUCTION :- 

 The first well known result on fixed point for contraction mapping was Banach fixed point theorem , Published 

in 1922 ,[12],In general setting of Complete metric space ,Smart [2] & A. Meir and E.Keeler [6] ,Theorems on 

contraction mappings presented the following results. 

Theorem 1.1: Let �X, d� be a complete metic space , α ∈  �0.1�and let T: X → X be a map such  
that for each x, y ∈  X, d�Tx, Ty� ≤ α d�x, y� 

Then, T has a unique fixed point z ∈  X such that for each x ∈  X, lim#→∞ T#x = z. 
After this result , more theorems with contraction mapping satisfies different types of contractive inequalities  

have been established see in [18],[11], [1]. 

Theorem 1.2 : Let �X, d� be a complete metic space , α ∈  �0.1�and let T: X → X be a map such  
that for each c ∈  X,           & ξ�t�dt ≤

(�)*,)+�

,
& ξ�t�dt

(�*,+�

,
 

Where ξ: �0, +∞. → �0, +∞.is a lebesgue integrable mapping which is summable on each 

 compact subset of �0, +∞., non negative, and such that, ∀  ε > 0, & ξ�t�dt
5

,
> 0 Then, T has 

[1] 

Unique fixed point z ∈  X, such that for each x ∈  X, T#x = z as n → ∞. 

It can be proved in [17], that theorem 1.2 could be extended to more general contractive conditions, e.g. ,in [15], 

Rhoades established that Theorem 1.2 holds. 

If we replace d(x, y) by max 6d�x, y�, d�x, Tx�, d�y, Ty�, (�*,)*�7(�+,)+�
8 9  other work in this 

particular case of the famous Meir-Keeler fixed point. 

Theorem [6], More precisely, he proved that under hypotheses of Theorem 1.2, , that is for every  

δ > 0 such that, Then T has a unique fixed point.  

In this paper, we obtain an extension of Theorem 1.2 through rational expression. 

MAIN RESULT:- 

Theorem1: Let (X,d) be a complete metric space and T: X → X be a given mapping , then  
for each x, y ∈ X ,                   

& ψ�t�dt ≤ α
(�)*,)+�

,
& ψ�t�dt

(�*,)*�7(�+,)+�

,
                                                       �1� 

Where α > 0, 0 < α < 1 and ψ ∶ �0,1� → �0,1�is a Lebesgue integrable mapping which 

Is summable on each compact subset of (0,∞), non negative , such that 

& ψ�t�dt > 0  , ∀ ∈> 0                                                                                           �2�
∈

,
 

Then T has unique fixed point  x ∈ X such that for each x ∈ X, T#x = z as n → ∞. 

Proof: Let  for any point x, ∈ X, ∃ xC ∈ X  such that 
xC = Tx, 

Similarly for any point xC ∈ X , ∃ x8 ∈ X  such that  
x8 = TxC 

Proceeding the same way we construct a sequence Dx#E of element x in X, as 

x#7C = Tx#  ∀ integer n ≥ 1 

Case I − Firstly we have to prove that the sequence Dx#E is a cauchy sequence 
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Now, from �1� 

& ψ�t�dt ≤ α
(�)*M,)*MNO�

,
& ψ�t�dt

(�*M,)*M�7(�*MNO,)*MNO�

,
 

 

& ψ�t�dt ≤ α
(�*MNO,*MNP�

,
& ψ�t�dt

(�*M,)*M�7(�*MNO,)*MNO�

,
 

 

Similarly, 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,)*MQO�7(�*M,)*M�

,
 

 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�7(�*M,*MNO�

,
 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
+ α & ψ�t�dt

(�*M,*MNO�

,
 

�1 − α� & ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

& ψ�t�dt ≤ α
�1 − α�

(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

                      ≤ q & ψ�t�dt
(�*MQO,*M�

,
 

Where  q = R
�CSR�   ,   α ϵ �0,1� 

Proceeding the same we can write, 

& ψ�t�dt
(�*O,*P�

,
≤  q & ψ�t�dt

(�*U,*O�

,
 

: 

: 

& ψ�t�dt ≤
(�*M,*MNO�

,
q# & ψ�t�dt

(�*U,*O�

,
 

since ψ is a lebeasgue measurable function and continous  so, we can write  
d�x#, x#7C�  ≤ q#d�x,, xC� 

lim#→∞
T x# = Tlim#→∞

x# = Tx 

for  m, n ≥ M 

d�x#, xV� ≤ d�x#, x#7C� + d�x#7C, x#78� + _ _ _ + d�xVSC, xV� 

d�x#, xV� ≤ q#d�x,, xC� + q#7Cd�x,, xC� + _ _ _ + qVSCd�x,, xC� 

 

≤ q#�1 + q + q8 + _ _ _ + qVSCS#� d�x,, xC� 

d�x#, xV� ≤ q#
1 − q d�x,, xC� 

as n → ∞ , we have   lim#→∞
 d�x#, xV� → 0 

lim#→∞
x# = x 

Now, for Xixed point  Let z ∈ X such that Tx# → z as n → ∞  we prove that Tz = z 

Then we have to substitute x = z , y = z# in �1� 

& ψ�t�dt ≤ α
(�)Y,)YM �

,
& ψ�t�dt

(�Y,)Y�7(�YM ,)YM �

,
 

& ψ�t�dt ≤ α
(�)Y,)YM �

,
& ψ�t�dt +

(�Y,)Y�

,
 α & ψ�t�dt

(�YM ,)YM �

,
 

lim#→∞
& ψ�t�dt ≤ α

(�)Y,)YM �

,
& ψ�t�dt

(�Y,)Y�

,
 

lim#→∞
d�Tz, Tz# � ≤ α d�z, Tz� 

as n → ∞ , d�z, Tz� → 0 
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Tz = z 

Which deduce that z is a fixed point of T. 

Uniqueness: -   Suppose that there is another fixed point of T say w, distinct from z in X then from (1) we have , 

& ψ�t�dt ≤
(�)Y,)Z�

,
& ψ�t�dt

(�Y,)Y�7(�Z,)Z�

,
 

                                 ≤ & ψ�t�dt
(�Y,)Y�7(�Z,)Z�

,
 

                                            = & ψ�t�dt
(�)YM,)YM�7(�)YM,)YM�

,
 

& ψ�t�dt < 0
(�)Y,)Z�

,
 

Which is a contraction. So, T has a unique fixed point in X. 

Theorem2: Let (M, d) be a complete metric space and Let T ∶ M → M be a mapping , we assume  
that for each x, y ∈ M , 
& ψ�t�dt ≤ a

(�)*,)+�

,
& ψ�t�dt

(�*,+�

,
+ b & ψ�t�dt

(P�*,)*�7(�*,)+�(�+,)*�7(P�+,)+�
C7(�*,)*�7(�+,)+�

,
                �1� 

[4] 

for all x, y ∈ M, a > 0, b > 0, 0 < a + 2b < 1 and ψ ∶ R7 → R7 is a Lebesgue integrable  
mapping which is summable on each compact subset of �0, +∞�, non negative and such that   

& ψ�t�dt > 0  , ∀ ∈> 0                                                                     �2�
∈

,
 

  Then T has a unique Xixed point z, ∈ M such that for each x ∈ M 

lim#→∞
 T#x = z, 

Proof: Letψ ∶ R7 → R7 be a condition as we deXine ψ,�t� = \ ψ�t�dt ,]
,  t ∈ R7. It is clear 

that ψ,�0� = 0 , ψ, is a monotonically non decreasing and by condition ψ, is absolutly  
continuous. Then for any for any point x, ∈ X, ∃ xC ∈ X  such that 

xC = Tx, 

Similarly for any point xC ∈ X , ∃ x8 ∈ X  such that  
x8 = TxC 

Proceeding the same way we construct a sequence Dx#E of element x in X, as 

x#7C = Tx#  ∀ integer n ≥ 1 

Case I − Firstly we have to prove that the sequence Dx#E is a cauchy sequence 

Now, from �1� 

& ψ�t�dt ≤ a
(�)*M,)*MNO�

,
& ψ�t�dt

(�*M,*MNO�

,
+ b & ψ�t�dt

(P�*M,)*M�7(�*M,)*MNO�(�*MNO,)*M�7(P�*MNO,)*MNO�
C7(�*M,)*M�7(�*MNO,)*MNO�

,
 

& ψ�t�dt
(�*MNO,*MNP�

,
≤ a & ψ�t�dt

(�*M,*MNO�

,
+ b & ψ�t�dt

(P�*M,)*M�7(�*M,)*MNO�(�*MNO,)*M�7(P�*MNO,)*MNO�
C7(�*M,)*M�7(�*MNO,)*MNO�

,
 

Similarly \ ψ�t�dt ≤ a(�*M,*MNO�
, \ ψ�t�dt(�*MQO,*M�

, + b \ ψ�t�dt
^P�_MQO,`_MQO�N^�_MQO,`_M�^�_M,`_MQO�N^P�_M,`_M�

ON^�_MQO,`_MQO�N^�_M,`_M�
,  

                 ≤ a & ψ�t�dt
(�*MQO,*M�

,
+ b & ψ�t�dt

(P�*MQO,)*MQO�7(�*MQO,)*M�(�*M,)*MQO�7(P�*M,)*M�
C7(�*MQO,)*MQO�7(�*M,)*M�

,
 

             ≤ a & ψ�t�dt
(�*MQO,*M�

,
+ b & ψ�t�dt

(P�*MQO,*M�7(�*MQO,*MNO�(�*M,*M�7(P�*M,*MNO�
C7(�*MQO,*M�7(�*M,*MNO�

,

≤ a & ψ�t�dt
(�*MQO,*M�

,
+ b & ψ�t�dt

(P�*MQO,*M�7(P�*M,*MNO�
C7(�*MQO,*M�7(�*M,*MNO�

,
 

≤ a & ψ�t�dt
(�*MQO,*M�

,
+ b & ψ�t�dt

(�*MQO,*M�

,
+ b & ψ�t�dt

(�*M,*MNO�

,
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�1 − b� & ψ�t�dt ≤ �a + b�
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

& ψ�t�dt ≤ �a + b�
�1 − b�

(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

& ψ�t�dt ≤ q
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

Proceeding as we get,    \ ψ�t�dt ≤ q(�*O,*P�
, \ ψ�t�dt(�*U,*O�

,  

                                                                             :                                       : 

& ψ�t�dt ≤ q#
(�*M,*MNO�

,
& ψ�t�dt

(�*U,*O�

,
 

since ψ is a lebeasgue measurable function and continous So we can write 

d�x#, x#7C�  ≤ q#d�x,, xC� 

lim#→∞
T x# = Tlim#→∞

x# = Tx 

for  m, n ≥ M 

d�x#, xV� ≤ d�x#, x#7C� + d�x#7C, x#78� + _ _ _ + d�xVSC, xV� 

d�x#, xV� ≤ q#d�x,, xC� + q#7Cd�x,, xC� + _ _ _ + qVSCd�x,, xC� 

≤ q#�1 + q + q8 + _ _ _ + qVSCS#� d�x,, xC� 

 d�x#, xV� ≤ q#
1 − q d�x,, xC� 

as n → ∞ , we havelim#→∞
 d�x#, xV� → 0 

lim#→∞
x# = x 

Which is a contradiction, we proved that  DTx#E  is Cauchy. 

Now for fixed point:  Let z ∈ X such that Tx# → z as n → ∞  we prove that Tz = z 

We have to substitute  x = z and y = z# in �1� 

& ψ�t�dt ≤ a
(�)Y,)YM�

,
& ψ�t�dt

(�Y,YM�

,
+ b & ψ�t�dt

(P�Y,)Y�7(�Y,)YM�(�YM,)Y�7(P�YM,)YM�
C7(�Y,)Y�7(�Y,)Y�

,
 

as   lim#→∞
& ψ�t�dt ≤ a

(�)Y,)YM�

,
& ψ�t�dt

(�Y,Y�

,
+ b & ψ�t�dt

(P�Y,)Y�7(�Y,)Y�(�Y,)Y�7(P�Y,)Y�
C7(�Y,)Y�7(�Y,)Y�

,
 

 

[6] 

 lim#→∞
& ψ�t�dt ≤ b

(�)Y,)YM�

,
& ψ�t�dt

(�Y,)Y�

,
 

as   lim#→∞
 d�Tz, Tz#� ≤ b d�z, Tz� 

As n → ∞ , we haved�z, Tz� → 0 

Tz = z,   which shows that z is a fixed point of T. 

Uniqueness ∶ −   Assume that there is aanother Xixed point say w of T which is distinct from z in X,  
then from �1� we have, 

& ψ�t�dt ≤ a
(�)Z,)Y�

,
& ψ�t�dt

(�Z,Y�

,
+ b & ψ�t�dt

(P�Z,)Z�7(�Z,)Y�(�Y,)Z�7(P�Y,)Y�
C7(�Z,)Z�7(�Y,)Y�

,
 

& ψ�t�dt ≤ a
(�)Z,)Y�

,
& ψ�t�dt

(�Z,Y�

,
 

which is a contradiction so T has a unique Xixed point in X. 
Theorem3: Let(X, d) be a complete metric space and S, T: X → X be a given mapping , then  
for each x, y ∈ X ,                   

& ψ�t�dt ≤ α
(�d*,)+�

,
& ψ�t�dt

(�*,d*�7(�+,)+�

,
�1� 

Where α > 0, 0 < α < 1 and ψ ∶ �0,1� → �0,1�is a Lebesgue integrable mapping which 

Is summable on each compact subset of (0,∞), nonnegative, such that 

& ψ�t�dt > 0  , ∀ ∈> 0                                                                                                �2�
∈

,
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Then S and T hasa unique fixed point  x ∈ X such that for each x ∈ X, T#x = z as n → ∞. 

Proof: LetX be a non empty set S, T: X → X then for any point x, ∈ X, ∃ xC ∈ X  such that 
xC = Tx, 

Similarly for any point xC ∈ X , ∃ x8 ∈ X  such that  
x8 = TxC 

Proceeding the same way we construct a sequence Dx#E of element x in X, as 

x#7C = Sx#and x#78 = Tx#7C∀ integer n ≥ 1 

Case I − Firstly we have to prove that the sequence Dx#E is a cauchy sequence 

 

Now, from �1� 

& ψ�t�dt ≤ α
(�d*M,)*MNO�

,
& ψ�t�dt

(�*M,d*M�7(�*MNO,)*MNO�

,
 

 

& ψ�t�dt ≤ α & ψ�t�dt
(�*M,d*M�7(�*MNO,)*MNO�

,

(�*MNO,*MNP�

,
 

Similarly, 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,d*MQO�7(�*M,)*M�

,
 

 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�7(�*M,*MNO�

,
 

& ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
+ α & ψ�t�dt

(�*M,*MNO�

,
 

�1 − α� & ψ�t�dt ≤ α
(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

& ψ�t�dt ≤ α
�1 − α�

(�*M,*MNO�

,
& ψ�t�dt

(�*MQO,*M�

,
 

                      ≤ q & ψ�t�dt
(�*MQO,*M�

,
 

Where  q = R
�CSR�   ,   α ϵ �0,1� 

Proceeding the same we can write, 

& ψ�t�dt
(�*O,*P�

,
≤  q & ψ�t�dt

(�*U,*O�

,
 

: 

: 

& ψ�t�dt ≤
(�*M,*MNO�

,
q# & ψ�t�dt

(�*U,*O�

,
 

since ψ is a lebeasgue measurable function and continous  so, we can write  
d�x#, x#7C�  ≤ q#d�x,, xC� 

lim#→∞
S x# = Slim#→∞

x# = Sx 

 

lim#→∞
T x#7C = Tlim#→∞

x#7C = Tx 

 

for  m, n ≥ M 

d�x#, xV� ≤ d�x#, x#7C� + d�x#7C, x#78� + _ _ _ + d�xVSC, xV� 

d�x#, xV� ≤ q#d�x,, xC� + q#7Cd�x,, xC� + _ _ _ + qVSCd�x,, xC� 

≤ q#�1 + q + q8 + _ _ _ + qVSCS#� d�x,, xC� 

d�x#, xV� ≤ q#
1 − q d�x,, xC� 

as n → ∞ , we havelim#→∞
 d�x#, xV� → 0 

lim #→∞
x# = x 

Therefore sequence Dx#E is a cauchy sequence in x. 
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Now, for Xixed point  Let z ∈ X such that Tx# → z as n → ∞ we prove that Tz = z 

Then we have to substitute x = z , y = z# in �1� 

& ψ�t�dt ≤ α
(�dY,)YM �

,
& ψ�t�dt

(�Y,dY�7(�YM ,)YM �

,
 

& ψ�t�dt ≤ α
(�dY,)YM �

,
& ψ�t�dt +

(�Y,dY�

,
 α & ψ�t�dt

(�YM ,)YM �

,
 

lim#→∞
& ψ�t�dt ≤ α

(�dY,)YM �

,
& ψ�t�dt

(�Y,dY�

,
 

lim#→∞
d�Sz, Tz# � ≤ α d�z, Sz� 

And lim#→∞
d�Sz, Tz# � ≤ α d�z, Tz� 

as n → ∞ , d�z, Sz� → 0     And  d�z, Tz� → 0 

Sz = Tz = z 
Which proves that z is a fixed point of T. 

Uniqueness:-Let if possible we assume that w be another fixed point of S and T, then from (1) we have , 

& ψ�t�dt ≤
(�dY,)Z�

,
& ψ�t�dt

(�Y,dY�7(�Z,)Z�

,
 

 ≤ & ψ�t�dt
(�dYM,dYM�7(�)YM,)YM�

,
 

      ∴ & ψ�t�dt < 0
(�dY,)Z�

,
 

Which is a contraction so T has a unique fixed point in X. 
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