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Abstract: This paper presents some common fixed point theorems for occasionally weakly compatible mappings 

in fuzzy metric spaces. 
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1. Introduction 

Fuzzy set was defined by Zadeh [7]. Kramosil and Michalek [5] introduced fuzzy metric space, George and 

Veermani [2] modified the notion of fuzzy metric spaces with the help of continuous t-norms. Many researchers 

have obtained common fixed point theorems for mappings satisfying different types.introduced the new concept 

continuous mappings and established some common fixed point theorems.open problem on the existence of 

contractive definition which generates a fixed point but does not force the mappings to be continuous at the fixed 

point.this paper presents some common fixed point theorems for more general . 

2 Preliminary Notes  

Definition 2.1 [7] A fuzzy set A in X is a function with domain X and values in [0,1]. 

Definition 2.2 [6] A binary operation * : [0,1]× [0,1]→[0,1] is a continuous t-norms if *is satisfying conditions: 

(1) *is an commutative and associative; 

(2) * is continuous; 

(3)  a *1 = a    forall  a ϵ [0,1]; 

(4) a * b ≤ c * d  whenever a ≤ c and b ≤ d, and a,b,c,d є [0,1]. 

Definition 2.3 [2] A 3-tuple (X,M,*) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-

norm and M is a fuzzy set on X
2
× (0,∞) satisfying the following conditions, for all x,y,z є X, s,t>0, 

(f1)M(x,y,t) > 0; 

(f2)M(x,y,t) = 1 if and only if x = y; 

(f3) M(x,y,t) = M(y,x,t); 

(f4)M(x,y,t)*  M(y,z,s) ≤ M(x,z,t+s) ; 

(f5)M(x,y,.): (0,∞)→(0,1] is continuous. 

Then M is called a fuzzy metric on X.Then M(x,y,t) denotes the degree of nearness between x and y with respect 

to t. 

Definition 2.4[2]Let (X,d) be a metric space.Denotea * b = ab for all a,bє [0,1] and Md be fuzzy sets onX
2
× (0,∞) 

defined as follows: 

   Md(x,y,t)=
),( yxdt

t
+ . 

Then (X, Md, *) is a fuzzy metric space.Wecall this fuzzy metric induced by a metric d as the standard 

intuitionistic fuzzy metric. 

Definition 2.5[2]Let (X, M, *) is a fuzzy metric space.Then 

(a) a sequence {xn} in X is said to convers to x in X if for each є>o and each t>o, Nno ∈∃  such           

      That M(xn,x,t)>1-є for all n≥no. 

(b)a sequence {xn} in X is said to cauchy to if for each ϵ>o and each t>o, Nno ∈∃  such           

      That M(xn,xm,t)>1-є for all n,m≥no. 

(c) A fuzzy metric space in which euery Cauchy sequence is convergent is said to be complete.Definition 2.6[3] 

Two self mappings f and g of a fuzzy metric space (X,M,*) are called compatible if  

1),,(lim =
∞→

tgfxfgxM nn
n

whenever {xn} is a sequencein X such that xgxfx n
n

n
n

==
∞→∞→

limlim  

For some x in X. 

Definition 2.7[1]Twoself mappings f and g of a fuzzy metric space (X,M,*) are called reciprocally continuous on 

X if fxfgxn
n

=
∞→

lim  and gxgfxn
n

=
∞→

lim  whenever {xn} is a sequence in X such that 

xgxfx n
n

n
n

==
∞→∞→

limlim for some x in X. 
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Lemma 2.8[4] Let X be a set, f,gowcself maps of X. If f and g have a unique point of coincidence, w = fx = gx, 

then w is the unique common fixed point of f and g. 

 

3  Main Results 
 

Theorem 3.1Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) such that 

∫
).,(

0

)(

qtRyPxM

dttξ  

 

M(Px,Ry,qt)≥ min{ M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

  M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)} ……………(1) 

For all x,yєX and for all t>o, then there exists a unique point wєX such that Pw = Sw = w and a unique point zєX 

such that Rz = Tz = z. Moreover z = w so that there is a unique common fixed point of P,R,S and T. 

Proof :Let the pairs {P,S} and {R,T} be owc, so there are points x,yϵX such that Px=Sx andRy=Ty. We claim 

thatPx=Ry. If not, by inequality (1) 

 M(Px,Ry,qt) ≥ min{ M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

                 M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)} 

M(Px,Ry,qt) ≥ min{ M(Px,Ry,t), M(Px,Px,t), M(Ty,Ty,t), M(Px,Ry,t), M(Ry,Px,t),   

              M(Px,Ry,t), M(Px,Ry,t)* M(Px,Px,t)} 

≥ min{ M(Px,Ry,t), M(Px,Px,t), M(Ty,Ty,t), M(Px,Ry,t),                                 

M(Px,Ry,t),M(Px,Ry,t), M(Px,Ry,t)*1} 

=M(Px,Ry,t). 

Therefore Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z such that     Pz = Sz then by 

(1) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique point of coincidence of P and S.By 

Lemma 2.8 w is the only common fixed point of P and S.Similarly there is a unique point zєX such that z = Rz = 

Tz.  

 Assume that w ≠ z. we have 

  

M(w,z,qt) = M(Pw,Rz,qt) 

  ≥min{ M(Sw,Tz,t), M(Sw,Pw,t), M(Rz,Tz,t), M(Pw,Tz,t), M(Rz,Sw,t),   

  M(Pw,Rz,t), M(Sw,Tz,t)* M(Pw,Pw,t)} 

 

 ≥ min{ M(w,z,t), M(w,w,t), M(z,z,t), M(w,z,t), M(z,w,t),   

  M(w,z,t), M(w,z,t)* M(w,w,t)} 

   

=M(w,z,t). 

Therefore we have z = w and z is a common fixed point of P,R,S and T. The uniqueness of the fixed point holds. 

Theorem 3.2 Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) such that 

 

M(Px,Ry,qt) ≥ Ø( min{ M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

  M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)}) ……………(2) 

 

For all x,yєXand Ø: [0,1]→[0,1] such that Ø(t) > t for all 0<t<1, then there existsa unique common fixed point of 

P,R,S and T. 

Proof :Let the pairs {P,S} and {R,T} be owc, so there are points x,yєX such that Px = Sx and   Ry = Ty. We 

claim that  Px = Ry. If not, by inequality (2) 

 

M(Px,Ry,qt) ≥ Ø( min{ M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

              M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)}) 

  >Ø(M(Px,Ry,t)).  From Theorem 3.1 

         =M(Px,Ry,t). 

Assume that w ≠  z. we have 

 

M(w,z,qt) = M(Pw,Rz,qt) 

  ≥min{ M(Sw,Tz,t), M(Sw,Pw,t), M(Rz,Tz,t), M(Pw,Tz,t), M(Rz,Sw,t),   
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  M(Pw,Rz,t), M(Sw,Tz,t)* M(Pw,Pw,t)} 

  =M(w,z,t).  From Theorem 3.1 

Therefore we have z = w and z is a common fixed point of P,R,S and T. The uniqueness of the fixed point holds. 

Theorem 3.3 Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) such that 

 

M(Px,Ry,qt) ≥ Ø(M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

  M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)) ……………(3) 

 

For all x,yєXand Ø: [0,1]
7
→[0,1] such that Ø(t,1,1,t,t,1,t) > t for all 0<t <1, then there exists a unique common 

fixed point of P,R,S and T. 

Proof: Let the pairs {P,S} and {R,T} be owc, so there are points x,yϵX such that Px = Sx and   Ry = Ty. We 

claim that  Px = Ry. If not, by inequality (3) 

M(Px,Ry,qt) ≥ Ø(M(Sx,Ty,t), M(Sx,Px,t), M(Ry,Ty,t), M(Px,Ty,t), M(Ry,Sx,t),   

                 M(Px,Ry,t), M(Sx,Ty,t)* M(Px,Px,t)) 

  M(Px,Ry,qt) ≥ Ø(M(Px,Ry,t), M(Px,Px,t), M(Ty,Ty,t), M(Px,Ry,t), M(Ry,Px,t),   

              M(Px,Ry,t), M(Px,Ry,t)* M(Px,Px,t)) 

= Ø(M(Px,Ry,t), M(Px,Px,t), M(Ty,Ty,t), M(Px,Ry,t),                                 

M(Px,Ry,t),M(Px,Ry,t), M(Px,Ry,t)*1) 

= Ø(M(Px,Ry,t), 1, 1, M(Px,Ry,t),  M(Px,Ry,t),M(Px,Ry,t), M(Px,Ry,t)) 

>M(Px,Ry,t). 

A contradiction, therefore Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z such that Pz = 

Sz then by (3) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique point of coincidence of P 

and S.By Lemma 2.8 w is the only common fixed point of P and S.Similarly there is a unique point zϵX such 

that z = Rz = Tz.Thus z is a common fixed point of P,R,S and T. The uniqueness of the fixed point holds from 

(3). 

Theorem 3.4 Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) for all x,yєX and      t > 0 

 

M(Px,Ry,qt) ≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t)*  M(Ry,Sx,t)* 

     M(Px,Ry,t)* M(Sx,Ty,t) ………………… (4) 

Then there existsa unique common fixed point of P,R,S and T.  

Proof: Let the pairs {P,S} and {R,T} be owc, so there are points x,yєX such that Px = Sx and   Ry = Ty. We 

claim that  Px = Ry. If not, by inequality (4) 

We have  

M(Px,Ry,qt) ≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t)*  M(Ry,Sx,t)* 

   M(Px,Ry,t)*  M(Sx,Ty,t) 

= M(Px,Ry,t)*  M(Px,Px,t)*  M(Ty,Ty,t)*  M(Px,Ry,t)*  M(Ry,Px,t)* 

   M(Px,Ry,t)* M(Px,Ry,t) 

= M(Px,Ry,t)*  1*  1*  M(Px,Ry,t)*  M(Ry,Px,t)* 

   M(Px,Ry,t)*  M(Px,Ry,t) 

 

>M(Px,Ry,t). 

Thus we have Px = Ry,  i.e. Px = Sx = Ry = Ty. Suppose that there is a another point z such that Pz = Sz then by 

(4) we have Pz = Sz = Ry = Ty, so Px=Pz and w = Px = Sx  is the unique point of coincidence of P and 

S.Similarly there is a unique point zϵX such that z = Rz = Tz.Thus w is a common fixed point of P,R,S and T. 

Corollary 3.5 Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) for all x,yϵX and      t > 0  

 

M(Px,Ry,qt) ≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t)*  M(Ry,Sx,2t)* 

   M(Px,Ry,t)*  M(Sx,Ty,t)      …………………(5) 

Then there existsa unique common fixed point of P,R,S and T. 

Proof: We have 

M(Px,Ry,qt) ≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t)*  M(Ry,Sx,2t)* 

   M(Px,Ry,t)*  M(Sx,Ty,t) 

≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t)*  M(Sx,Ty,t)*         M(Ty,Ry,t)*  

M(Px,Ry,t)*  M(Sx,Ty,t) 

≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Ry,Ty,t)*  M(Px,Ty,t) *  M(Px,Ry,t)* 
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M(Sx,Ty,t) 

= M(Px,Ry,t)*  M(Px,Px,t)*  M(Ty,Ty,t)*  M(Px,Ry,t)*  M(Ry,Px,t)* 

   M(Px,Ry,t)*  M(Px,Ry,t) 

= M(Px,Ry,t)*  1*  1*  M(Px,Ry,t)*  M(Ry,Px,t)* 

   M(Px,Ry,t)*  M(Px,Ry,t) 

 

>M(Px,Ry,t). 

And therefore from theorem 3.4, P,R,S and T have a common fixed point. 

 

Corollary 3.6 Let (X, M, *) be a complete fuzzy metric space and let P,R,S and T be self-mappings of X. Let the 

pairs {P,S} and {R,T} be owc.If there exists qє(0,1) for all x,yєX and      t > 0  

 

M(Px,Ry,qt) ≥ M(Sx,Ty,t)      …………………(6) 

Then there existsa unique common fixed point of P,R,S and T. 

Proof: The Proof follows from Corollary 3.5 

Theorem 3.7 Let (X, M, *) be a complete fuzzy metric space.Then continuous self-mappings S and T of X have 

a common fixed point in X if and only if there exites a self mapping P of X such that the following conditions 

are satisfied 

 (i) PX ⊂  TX I  SX 

 (ii)  The pairs {P,S} and {P,T} are weakly compatible, 

 (iii) There exists a point qє(0,1) such that for all x,yєX and t > 0  

M(Px,Py,qt) ≥ M(Sx,Ty,t)*  M(Sx,Px,t)*  M(Py,Ty,t)*  M(Px,Ty,t)*  M(Py,Sx,t) 

         …………………(7) 

Then P,S and T havea unique common fixed point. 

Proof: Since compatible implies ows, the result follows from Theorem 3.4 

 

Theorem 3.8 Let (X, M, *) be a complete fuzzy metric space and let P and R be self-mappings of X. Let the P 

and R areowc.If there exists qє(0,1) for all x,yєX and      t > 0  

 

M(Sx,Sy,qt) ≥αM(Px,Py,t)+β min{M(Px,Py,t), M(Sx,Px,t),  M(Sy,Py,t),  M(Sx,Py,t)} 

         …………………(8) 

For all x,yϵ X where α,β> 0, α+β> 1. Then P and S have a unique common fixed point. 

 

Proof: Let the pairs {P,S} be owc, so there are points x єX such that Px = Sx. Suppose that exist another point y 

єX for whichPy = Sy. We claim that Sx = Sy. By inequality (8) 

We have  

 

M(Sx,Sy,qt) ≥αM(Px,Py,t)+ β min{M(Px,Py,t) , M(Sx,Px,t),  M(Sy,Py,t),  M(Sx,Py,t)} 

=αM(Sx,Sy,t)+ β min{M(Sx,Sy,t) , M(Sx,Sx,t),  M(Sy,Sy,t),  M(Sx,Sy,t)}               

=(α+β)M(Sx,Sy,t) 

A contradiction, since (α+β)> 1.Therefore Sx = Sy. Therefore Px = Py and Px is unique. 

 From lemma2.8 , P and S have a unique fixed point. 
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