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ABSTRACT 

In this research paper to obtained a common unique fixed point theorem for two continuous surjective random 

operators defined on a non empty closed subset of separable Hilbert space. The corresponding result for non-

random case is also obtained. 
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1. Introduction 

The study of random fixed points has been an active area of contemporary research in mathematics. Some of the 

recent works in this field are noted in [2, 5, 6, 1]. 

 In this paper, we construct a sequence of measureable functions and consider its convergence to the 

common unique random fixed point of two continuous surjective random operators, defined on a non-empty 

closed subset of a separable Hilbert space. For the purpose of obtaining the random fixed point of two 

continuous, surjective random operators, we have used a rational inequality.  

Throughout this paper (Ω, ε) denotes a measurable space consisting of a set Ω  and sigma algebra ∑ of 

subset of Ω , H stands for a separable Hilbert space and C is a non-empty closed subset of H. 

 

2. Preliminaries : 

Definition 2.1 : A function f : Ω → C is said to be measurable if f
-1

 (B∩C) ε∑ for every Borel subset B of H. 

Definition 2.2 : A function F : Ω x C → C is said to be a random operator if F (., x ) :  Ω → C is measurable for 

every x ∈ C. 

Definition 2.3 : A measurable function g : Ω →  C is said to be a random fixed point of the random operator F : 

Ω × C → C if F (t, g (t)) = g (t) for all t ∈ Ω. 

Definition 2.4 : A random operator F : Ω × C → C  is said to be  contin continuous if for fixed t ∈ Ω, F (t, . ) : C 

→ C is continuous.    

   Condition   A : Two  mappings p, T : C → C, where C is a non-empty subset of a Hilbert space H, is said to 

satisfy condition (A) it. 
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where a1+a3+a4+a5+a6 > 1, a2+a6 > 1 and a1, a2, a3, a4, a5, a6> 0.....(2.2) 

We construct a sequence of functions {gn} as 

g0 : Ω → C     .... (2.3) 

is arbitrary measurable function for t ∈ Ω and n = 0, 1, 2 ......... 

 g2n (t) = P (t, g2n+1(t) ), g2n+1 (t) = T (t, g2n+2 (t))   ..... (2.4) 

 

3. Main Results : 

Theorem 3.1 : Let C be a non-empty closed subset of a separable Hilbert space H. let P and T be two 

continuous, surjective random operators defined on C such that for t ∈ Ω, P (t, .)  T (t, .) : C → C satisfy 

conditino (A). Then the sequence {gn} obtained in (2.3) and (2.4) converges to the unique common random fixed 

point of P and T. 
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Proof : for fixed t ∈ Ω, n = 1, 2, 3, ......... 
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For fixed t ∈ Ω, n = 1, 2, 3 ...... 
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The inequalities (3.1) and (3.2) are jointly imply that for all  

t ∈Ω,   n = 1, 2, 3 .......... 

|| gn (t) – gn+1  (t) || <  K || gn-1 (t) – gn (t) – gn (t) || 

Where K = max {k1, k2} <1 

=> || gn(t) – gn+1 (t) || < K
n
 || g0 (t)  - g1 (t) || for t ∈ Ω  ..... (3.3) 

Now we shall prove that for t ∈ Ω  {gn (t)} is a cauchy sequence. For this for every positive integer r, we have || 
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As n → ∞,  || gn – gn+r  (t) || → 0,  it follows that for t ∈ Ω , {gn (t)} is a cauchy sequence and hence is convergent 

in Hilbert space H. 

For t ∈ Ω  , let 

{gn (t) → g (t)   as n → ∞      ......... (3.4) 

Since C is closed, g is a fnction from C to C. 

Since P and T are surjective maps. So there exists two functions  

g : Ω → C and g" : Ω → C such that 

g (t) = p (t, g' (t) and g (t) = T (t, g" (t))   .......... (3.5) 

For t ∈  Ω 
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Making n → ∞ in the above inequality we have by virtue of (3.4) for all t ∈ Ω, 

0  >  (a4 + a5) || g (t) – g" (t) ||
2
 

=>  g (t) – g" (t) ||
2
  = 0 [as a4 + a5 > 0] 

=>  g (t) = g" (t) for t ∈ Ω      ....... (3.6) 

In an exactly similar way by using (a3 + a5) > 0 we can prove that 

g (t) = g
’
 (t) for t ∈ Ω       ......... (3.7) 

Thus by (3.5), (3.6) and (3.7) we have, for t ∈ Ω  

P (t, g (t)) = g (t)       ......... (3.8) 

and T (t, g (t) = g (t)     .......... (3.9) 

Again, if A: Ω × C → is a continuous random operator on a non-empty subset C of a separable Hilbert 

space H, then for any measurable function f : Ω  →  C, the function h (t) = A (t, f (t) ) is also measurable [3] 

It follows from the construction of {gn} (2.3) and (2.4) and the above consideration that {gn} is a 

sequence of measurable functions from (3.4) it follows that g is also a measurable function. This fact along with 

(3.8) and (3.9) show that g : Ω  C →   is a common random fixed point of P and T. 

Next we prove that uniqueness let h: Ω → C be another random fixed point common to P and T, that is 

for t ∈ Ω. 

P (t, h (t)) = h (t) and T (t, h (t) = h (t)  ........... (3.10) 
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=> g (t) = h (t) for all t ∈ Ω 

This complete the proof of the theorem 3.1 
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