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The Axisymmetric Indentation of Semi-Infinite  Transversely 

Isotropic Space by Heated Annular Punch 

 

S. K. Garg* and M. Kumar** 

 

1. INTRODUCTION 

The problem of determining the distribution of stress in a semi – infinite elastic solid when a rigid body of 

prescribed shape is pressed against its free surface is associated with the name of Boussinesq, since it was first 

discussed in classical Treatise [1]. A detailed account of punch problem may be formed in Sneddon [2] and 

Green and Zerna [3]. Recently, Shibuya et.al. [4] devised a novel technique for determining stress distribution in 

elastic half space indented by flat annular punch. Shibuya et.al. [5] also extended this technique  to determine 

stress distribution in an elastic slab indented by  a pair of flat rigid annular punches. 

George and Sneddon [6] were first to study the axially symmetric problem of elastic half space indented by 

heated punch. Keer and Fu [7] also studied the thermo – elastic stress distribution problem due to combined 

loading of rigid, non– symmetrical, circular punches indenting thick elastic plate.  The axisymmetric Boussinesq 

problem for heated annular punch was discussed by Kumar and Hiremath [8]. The problem of determining 

axisymmetric distribution in a thick elastic plate indented by a pair of heated annular punches was also studied 

by Kumar and Hiremath [9]. 

The present paper extends the method of Kumar and Hiremath [8, 9] to study the problem of determining stress 

distribution in a transversely isotropic  half space indented by a heated annular rigid punch. The mixed boundary 

value problem is reduced to the solution of triple integral equations, which in turn are reduced to the solution of 

linear simultaneous algebraic equations. These are solved numerically. 

 

2. FORMULATION OF THE PROBLEM 

It is assumed that the axis of the annular punch is normal to the boundary plane of the transversely 

isotropic elastic solid. If we take the undisturbed boundary to be plane z = 0 and the print, at which the tip of the 

punch begins to indent the solid to be origin of coordinates, then a typical point of solid in cylindrical 

coordinates is described as (r, θ, z). (See Fig. 1). Because of axial  symmetry, the only non – zero components of 

displacement vector are u and w and that of stress tensor are σrr, σθθ, σzz and σrz. Since the bodies in contact are 

smooth, we have 

σrz (r, 0)  =  0    ;      r   ≥   0        (2.1) 
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The mixed conditions on z  =  0 are 

w(r, 0)   =  ∈     ;      ri   ≤   r   ≤   r0                                                        (2.2) 

σzz(r, 0)  =  0     ;       r   <   ri    and    r   >   r0                             (2.3) 

Where ∈ is depth of penetration of the punch. 

 

 The temperature at the point (r, θ, z) of the elastic solid is taken to be T(r,z), where T is the temperature 

of the solid in a state of zero stress and strain. We are assuming that the heating of the annular punch is also 

axisymmetric. Following types of temperature condition are considered. 

a) Temperature gradient is prescribed 

∂T/∂z] z = 0    =  −T0  ;  ri   ≤   r   ≤   r0      

 T(r, 0)    =  0  ;        r   <   ri ,     r   >   r0                    (2.4) 

 

b) Temperature field due to surface conditions are  

                           T1    ;      ri   ≤  r   ≤   r0 

         T(r, 0)  =                                                                                                               (2.5) 

                            0    ;      r  <  ri,     r   >  r0 

 

For transversely isotropic solid, the equation of thermoelastic equilibrium of u and w are  

 

        ∂2
u/        1      ∂u            u             ∂2

u                       ∂2
w              ∂T 

C11------- + ----- ------- −  ------ + C44 ------ + C13 + C44  -------- = α1 ------- 

        ∂r
2 
        r       ∂r            r2

              ∂z
2
                        ∂r∂z              ∂r            (2.6) 

 

       ∂2
w    1    ∂w              ∂2

w                       ∂   ∂u       u             ∂T 

C44----- + --- -----   + C33 ----- + C13 + C44  ---- ----- + ----= α2  ------ 

       ∂r
2 
     r     ∂r               ∂z

2
                       ∂z  ∂r        r              ∂z  (2.7) 

 

In study state, the temperature of a transversely isotropic solid is governed by 

 

  ∂∂∂∂2
T        1       ∂∂∂∂T        1      ∂∂∂∂2

T 

------- + -----  ------ + ----  ------- = 0                                                                 (2.8)     

   ∂r
2
          r        ∂r        s

2
     ∂2

T 

 

where s
2
 is ratio of conductivity coefficients. 

The stress and displacement components appropriate to the problem are 
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Fig – 1 Geometry of the problem 

Fig – 1 Geometry of the problem 
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                        ∞                                        ∞ 

                                                                 

 u(r, z) = −λ1     y
−1

 A(y) e
−ysz  

J1(yr) dy −  y−1
 A1(y) e

−yz / ν
1  J1(yr) dy   

                                                                

                          ∞       0                                         0                                     

                            
                     −     y−2

 A2(y) e
−yz / ν

2  J1(yr) dy      (2.9) 

                            
                           0                                           

 

                        ∞                                                 ∞ 

                                                                   µ1    

 w(r, z) = −λ2s  y−1
 A(y) e

−ysz  
J0(yr) dy − ------  y−1

 A1(y) e
−yz / ν

1  J0(yr) dy  

                                                                  v1    
                                    0                                                  0 

                                            ∞ 

                                µ2    

                    − ------  y−1
 A2(y) e

−yz /ν
2  J0(yr) dy                 (2.10) 

                                       v2     
                               0 

 

                                                         ∞∞∞∞   

                                                                                    C33 µµµµ1            
σσσσzz  (r, z) =  ( C33 λλλλ2s

2
 −−−− αααα2 −−−−C13λλλλ1)  A(y) e

−−−−ysz
  J0(yr) dy +  --------- −−−− C13   ×××× 

                                                                                        v1
2
              

                                             0 

             ∞∞∞∞                                                                   ∞∞∞∞ 

                                                  C33 µ2              

          A1(y) e
−yz / ν

1 J0(yr)dy +  -------- − C13   A2(y)e
−yz/ ν

2
  
J0(yr) dy (2.11) 

                                                      v2
2 
              

         0                                                                   0                             

 

 

                                                 ∞∞∞∞   

                                                                                           C44                  

σσσσrz  (r, z) =  C44  (λλλλ1 + λλλλ2)s  +   A(y) e
−−−−yzs

  J1(yr) dy  +  ---------- (1 +  µµµµ1) 

                                                                                                     νννν1           

                                                 0 

 

            ∞∞∞∞                                                              ∞∞∞∞ 

                                                     C44                  
           A1(y) e

−yz / ν
1 J1(yr)dy +   -------- (1 +µ2)  A2(y)e

−yz / ν
2

 
J1(yr) dy (2.12) 

                                                      ν2                   
                0                                                                0                          

 

                   ∞ 

                                  

T(r, z) =      A(y) e
−ysz    

J0(yr) dy      (2.13) 

                                 
                               0                                                                                      

 

 The functions A(y), A1(y) and A2(y) are determined from the mixed boundary conditions. 

 

3. STANDARD RESULTS 
 

We shall use following standard results frequently. They may be found in Erdelyi [10] and also Erdelyi [11] 
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                                         cos nφ 

∞            ---------------   ,             ri   ≤   r   ≤   r0    

                                                       π b rc sinφ  

 y J0(yr)   Zn (y) dy  =                                                                              (3.1) 

                                                            0           ,            r   <   ri,   r   >   r0        

0 

 

and     0    ≤   φ   ≤   π 

 

It is simple to drive the following using (3.1) 

 

 ∞ 

                                                          2sin nφ 

  y[Zn-1 (y) − Zn+1 (y)] J0(yr) dy =   --------------,    ri    ≤    r    ≤   r0    

                                                            π b rc                                          (3.2) 

0                                                       
                                                                               0         ,    r   <   ri,    r   >   r0               

 

where 

 Zn(y)  =  Jn(yrc)  Jn(yb)                                                                         (3.3) 

and  

r
2
  =  rc

2
  +  b

2
  −  2rc b  cosφ,     2rc  =  ri  +  r0                                          (3.4) 

 

We shall also use the result, 

 π 

  

  cos nφ  J0(ξ √{rc
2
  +  b

2
  −  2rc  b cosφ}dφ   =   π Zn(ξ)                          (3.5) 

  
 0 

It is possible to derive that  

                                              ∞ 

 J0(yr)  =  Z0(y)  +  2   ∑     Zm(y)  cos mφ                                                 (3.6) 

                                               m=1 

 

 m = 1, 2, ….., ∞,   and for  ri  ≤  r  ≤  r0 

 

Further, using results of Erdelyi [11, p.:53] 

                   Γ(n +  1/2)        b   n
 

          -----------------------------    [F {1/2 ,    n + 1/2 , n + 1; sin
2φ} , 

           Γ(n + 1) Γ(1/2) rc     rc                                                  
I0

n 
 =                                         F {1/2 ,  n + 1/2 ,    1; sin

2ψ }] ;  r  <  ri 

                                                           

            (−1)
n
     Γ(n +  1/2)

  2    brc n        (3.7) 

          --------  ---------------     ----    [ F{n + 1/2,  n + 1/2, n + 1; sin
2φ}] 

              πr          Γ(n + 1)           r2
     

                                                 F{n + 1/2 ,  n + 1/2,  n + 1; sin
2ψ },   r  >  r0  

                                                                  

where F (α, β, γ; x) is the Gauss hyper geometric series and  
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                            1               r + b                   r – b    
                         -----  sin

–1
 --------- ±    sin

–1
 ---------  ;    r < ri 

         ψ            2                  rc                        rc      
        ---- =                                                                                                               (3.8) 

         φ             1                r0                        ri     
                          -----sin

–1
 --------- ±   sin

–1
 --------- ;      r < r0 

                            2                r                        r0       
 

 

4. DETERMINATION OF TEMPERATURE FIELD 
 

We shall determine the temperature field T(r, z) using two types of boundary conditions (2.4) and (2.5).  

CASE (a): The use of boundary conditions (2.4) with (2.13), gives us 

            ∞ 

  ∂T                 

  ----          =   y  A(y)  J0(yr)dy  =  T0 / s,     ri   ≤   r   ≤   r0 

             ∂Z z = 0  
 
                                                                                      (4.1) 

                                  0 

 

                                  ∞ 

                                  
   T(r, 0)    =    A(y) J0(yr)dy = 0 ,     r  <  ri   ,     r  >  r0 

                                                                                                                     (4.2) 

                                0 

It is possible to express T(r,0) by Fourier sine series with respect to φ using  (3.4) 

                                2       ∞ 

      T(r, 0)  =  -------   ∑∑∑∑    b′′′′n   sin nφφφφ ,      ri   ≤≤≤≤   r   ≤≤≤≤   r0                                        (4.3) 

                               πbrc    n = 1 

 

In  view  of  (4.3) and  (3.2),  it  is  simple  to  see  that  (4.2)  is satisfied, if A(y) is chosen as 

                          ∞                       

         A(y)  =   ∑    b′n  Gn(y)                           (4.4) 

                        n = 1 

where 

 Gn(y) = y [Zn−1(y)  − Zn+1(y)]           (4.5) 

 

This choice of A(y) reduces (4.1) to 

                       ∞ 

             ∞        
             ∑  bn   yGn(y) J0(yr) dy = 1   ;      ri    ≤   r    ≤    r0                              (4.6) 

          n = 1          

                       0 

where 

bn = sb′nT0                                                                                              (4.7) 

 

Substitute J0(yr) from (3.6) and compare coefficient of cosmφ to obtain following: 

                        ∞         

  ∞           

∑   bn   y Gn(y) Zm(y) dy = s0, m;         m  =     1,    2,  …, ∞           (4.8) 

  n = 1     

                       0 

Now, subtract (m + 1)
th

 equation from (m − 1)
th

 equation to get symmetrical form of infinite set of simultaneous 

equations in unknowns bn.  
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                       ∞         

∞          

∑   bn   Gn(y) Zm(y) dy = δ1, m;  m  =  1,  2, …, ∞         (4.9) 

n = 1  

                     0 

The set of simultaneous equations is solved for bn by the process described in Section 7. Since coefficients bn are 

known, it is now possible to express 

                                           ∞ 

T(r, 0) = 2T0/πsbrc  ∑ bn sinnφ ;        ri    ≤    r    ≤    r0                   (4.10) 

CASE (b): The boundary condition (2.5) gives us 

                 ∞    

                                                  T1,             ri  ≤  r  ≤  r0                                                                                      

                   A(y) J0(yr)dy   =                                                                       (4.11) 

                                                  0,                r  <  ri,  r  <  r0 

                 0 

It is simple matter due to express T(r, z) in following form  

                            ∞ 

                            
       T(r, z) = T1    [r0 J1(ξ r0) − ri J1(ξ ri)] e

−ξz
 J0(ξr)dξ;     ri  ≤  r  ≤  r0        (4.12) 

                            
                           0 

5. SOLUTION OF THERMOELASTIC PROBLEM 
 

The boundary condition (2.1) is satisfied if 

C44/ν1 (1 + µ1) A1(y) + C44/ν2 (1 + µ2) A2(y) =  −C44 (λ1 + λ2)sA(y)    (5.1) 

                                                                                                              

The boundary conditions (2.2) and (2.3) yield following triple integral equations 

                            ∞                                      

                                                             p2     

            w(r, 0) =   N(y) J0(yr)dy    =  -------- ∈  + p(r) ,     ri  ≤  r  ≤  r0             (5.2) 

                                                             p4  

                           0  

 

                          ∞      

                                                    

       σzz (r, 0) =  y N(y) J0(yr)dy  =  0 ,    r  <  ri ,    r  >  r0                                  (5.3) 

                                             
                         0  

where 

y N(y) = p1 A(y) + p2 A2(y)                                                                (5.4) 

 

   p1= C33λ2s
2
 − α2 − C13λ1 −  (C33µ1 − C13ν1

2
) (λ1 + λ2)s/(1 + µ1) ν1. 

 

         p2=   C33 µ2 − C13 ν2
2
/ν2

2
  −  (C33 µ1 − C13 ν1

2
) (1 + µ2 )/ (1 + µ1) ν1ν2 

                                                                     

p3 = −λ2 S + µ1 (λ1 + λ2)s/(1 + µ1) 

 

            p4  = µ1(1 + µ2)/ (1 + µ)µ2 −(µ2/ν2) 

                                               ∞ 

                                      p2 p3       

p(r) =     p1  −  ----------  y−1
 A(y) J0(yr)dy                                     (5.5) 

                                        p4        

                                                     0 

It is well known that the normal stress σzz (r, 0) will have singularities of the form (r
2
 − ri

2)−1/2
 at r = ri and (r0

2
 − 

r
2
)
−1/2

 at r = r0 (see George and Sneddon [6]). 
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Hence in the region of annular punch, we can express 

  σzz (r, 0) =  ∈f(r)/√ {(r0
2
 − r

2
) (r

2
 − ri

2
)}      (5.6) 

where f(r) is unknown function in ri  ≤  r  ≤  r0 and ∈ is depth to which heated punch penetrates. From definition 

of variable rc and b of equation (3.4), we find that the variable r in ri  ≤  r  ≤  r0 can be replaced by a new variable 

φ with property that φ = 0 and π respectively at r = ri and r = r0. It is possible to express f(r) in Fourier series with 

respect to φ  

                        ∞ 

       f(r) =   ∑   an cosnφ           and                                                                     (5.7) 

                     n = 0 

                                ∈        ∞           cosnφ  

           σzz (r, 0) = --------   ∑     an ----------- ;         ri  ≤  r  ≤  r0                     (5.8) 

                              2brc   n = 0          sinφ 

where an is unknown coefficient. Equations (5.3) and (5.8) and the Hankel inversion transform gives us 

                                              π 

                         ∈       ∞         
       N(y) = -------   ∑   an   cos nφ J0(ξr)dφ       (5.9) 

                        2     n = 0       
                                              0 

The use of result (3.5) gives us 

                         π∈     ∞           

           N(y) = -------   ∑     an Zn(y)                                          (5.10) 

                          2    n = 0       

where Zn(y) is defined by (3.3). Substitution of this N(y) in (5.2), we get 

                                        ∞                                    

                 π∈      ∞                                       p2 

              -------    ∑     an  Zn(y) J0(yr)dy  = ------- ∈ + pr                                 (5.11) 

                  2     n = 0                                      p4 

                                       0 

Substituting J0(yr) from (3.6) in (5.11), we get 

                ∞                                                                              ∞ 

    ∞                                      2      p2                     2     ∞         

   ∑     an  Zm(y) Zn(y)dy = ----- ------- δ0, m + -------  ∑    bn  Gn(y) Zm(y)dy  (5.12) 

 n = 0                                   π      p4                   π∈  n = 0        

               0                                                                                0                          

where m = 0, 1, 2, ……, ∞. 

 

This is an infinite set of simultaneous equations in unknown an. This can be solved numerically for an and the 

procedure is described in section 7. The N(y) is therefore assumed to be known. 

 

6. QUANTITES OF PHYSICAL INTEREST 
The shape of deformed surface in the region r  < ri and r  > r0 , is given by 

                                 ∞                                                     

                                   p4                                        p1p4           
 
    

   W(r, 0)  =    ----- yN(y)  +   p3  −  ---------  A(y)  y−1
  J0(yr)dy 

                     
   p2                                 p2                 

                               0        

                         π       p4     ∞                         p1p4     T0      ∞ 

       =   -----  -----   ∑  an I0
n
 +  p3 − --------- ------   ∑    bn  [I0

n−1− I0 
n+1

]  (6.1) 

              2      p2  n = 0                         p2        s    n = 1                      

 

where  Ik
n 
 is given by (3.7).  

The normal stress under punch (ri  ≤  r  ≤  r0) is given by  

                                  ∈        ∞       cos nφ 

           σzz (r, 0) = ---------   ∑ an  -----------  ;        ri  ≤  r  ≤  r0               (6.2) 

                               2brc   n = 0       sin φ 
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where φ = cos
−1

(rc
2
 + b

2
 − r

2
    )

 
/ 2brc  

 

The total load P that must be applied to maintain the prescribed displacement is 

                            r0 

                            
             P = −2π   r σzz (r, 0) dr 

                            
                          ri 

 

                =  −π  a0 ∈                                                                                        (6.3) 

 

 

7. NUMERICAL CALCULATIONS 
 

We now describe the method of solving infinite set of linear simultaneous equations (5.12) and 

(4.8). The procedure is stated for (5.12) and (4.8) is also solved by the same method. The general element 

of set (5.12) is written as 

                                    λ           

                                    
        Anm = Amn =  Zn(y) Zm(y)dy                                         (7.1) 

                                   
                                  0 

Using asymptotic expansions for Bessel function for large value of argument y, we can rewrite (7.1) as 

                   λ           

                   

       Anm =   Zn(y) Zm(y)dy + A′nm                  (7.2) 

                  
                 0 

where A′nm = 1/π2
brc [λ

−1
 cos

2
 λri + ri Si(2λ ri) + {(−1)

m
 + (−1)

n
} {λ−1

 {λ−1
 sinλ r0cos λri 

+ r0 Ci(2λ r0) − b Ci(2λb)}+(−1)
m+n+2

 {λ−1
 sin

2
 λr0 −  r0 Si(2λr0)}] (7.3) 

                      x 

                                         sint 

                    Si (x)  =  -------------- dt, 

                                            t 

                                 ∞ 
                                x 

                                         cost 

                    Ci(x)  =  -------------- dt, 

                                            t 

                                      ∞ 

The first integral of (7.2) is evaluated using Gauss Legendre formula. The upper limit λ is fixed equal to 20. The 

second term is also evaluated numerically. Thus, Anm will be known. The outer radius r0 of annual punch is taken 

as the unit of length and is fixed equal to 1.0. The inner radius ri is made to vary from 0.1 to 0.9 in step of 0.2. 

The calculations are performed for transversely isotropic crystals Mg, and Cd values for C44, ν1, ν2 etc are taken 

from [12]. The variation of total load P is shown in Fig. 2. It is noticed that variation of P with ri is ordered as 

Cd > ISO > Mg. The values of total load P for isotropic medium (ISO) are taken from [8] and plotted.  
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