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ABSTRACT  
Fixed point theory for multi-valued mappings has many useful applications in applied sciences, in particular in 

Game theory and Mathematical Economics. Thus it is natural to try of extending the known fixed point results 

for single-valued mappings to the setting of multi-valued mappings. Some theorems of existence of fixed points 

of single-valued mappings have been extended to the multi-valued case. For example, in 1969 Nadler extended 

the Banach contraction principle to multi-valued contractive mappings in complete metric space. However, many 

other questions remain open. Moreover, the study of existence of coincidence and fixed points for hybrid 

contraction that is a pair of single-valued and multi-valued maps became more interesting due to the recent 

investigation of Corley in 1986. He gave a good relationship between hybrid fixed points and optimization 

problems. Here we present the main known results and current research direction in this subject .This talk can be 

considered as a survey, but some new results are also included. 

Mathematics Subject Classifications: 47H10, 54H25. 

 

1.THE BACKGROUND OF METRICAL FIXED POINT THEORY : 

 

Let X  be a nonempty set and :T X X→  a self-map. We say that x X∈  is a fixed point of T  if, 

                                      ( )T x x=  

and denote the set of all fixed points of T  by ( ){ }/
T

F x X T x x= ∈ =  or by Fix .T  

EXAMPLE 1.1. 

1) If X R=  and ( ) 2 5 4,T x x x= + +  then { }2 ;
T

F = −  

2) If X R=  and ( ) 2 ,T x x x= −  then  { }0,2 ;
T

F =  

3)  If X R=  and ( ) 2,T x x= +  then ;TF φ=  

4) If X R=  and ( ) ,T x x=  then .TF R=  

Let X  be any set and :T X X→  a self-map. For any given ,x X∈  we define ( )nT x  inductively by 

( )0T x x=  and ( ) ( )( )1 ;n nT x T T x+ =  we call ( )nT x  the 
thn  iterate of x  under .T  In order to simplify 

the notations we will often use Tx  instead of ( ).T x
 

The mapping ( )1nT n ≥  is called the 
thn  iterate of .T  For any ,x X∈  the sequence { }

0n n
x X

≥
⊂  given 

by  

                                    ( )1 0
, 1,2..... 1n

n n
x Tx T x n−= = =  

is called the sequence  of successive approximations with the initial value 0.x  It is also known as the Picard 

iteration. 

 

For a given self-map the following properties obviously hold: 

1) ,nT T
F F⊂  for each 

*;n N∈  

2) { },n
T

F x=  for each { }* ;
T

n N F x∈ ⇒ =  

The reverse of 2) is not true, in general, as shown by the next example. 
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EXAMPLE 1.2. Let { } { } ( ) ( ): 1,2,3 1,2,3 , 1 3, 2 2T T T→ = =  and ( )3 1.T =  Then { }2
T

F =  and    

{ }2 1,2,3 .
T

F =  

The fixed point theory is concerned with finding conditions on the structure that the set X  must be endowed as 

well as on the properties of the operator : ,T X X→  in order to obtain results on: 

    a) the existence (and uniqueness) of fixed points; 

    b) the construction of fixed points. 

The ambient spaces X  involved in fixed point theorems cover a variety of spaces: lattice, metric space, normed 

space, generalized metric space, uniform space, linear topological space etc., while the conditions imposed on 

the operator T  are generally metrical or compactness type conditions. In order to introduce the most important 

ones, we need some minimal functional analysis background. 

DEFINITION 1.1. Let ( ),X d  be a metric space. A mapping :T X X→  is called: 

( )1
a  Lipschitzian (or L-Lipschitzain) if there exist 0L >  such that  

              ( ) ( ), , ,d Tx Ty Ld x y≤  for all , ;x y X∈  

( )2
a  (strict) contraction (or a-contraction) if there exists a constant (0,1]a∈  such that T  is a-Lipschitzian; 

( )3
a  nonexpansive if T  is 1-Lipschitzian; 

( )4
a  contraction if ( ) ( ), , ,d Tx Ty d x y<  for all , , ;x y X x y∈ ≠  

( )5
a  isometry if ( ) ( ), , ,d Tx Ty d x y=  for all , ;x y X∈  

EXAMPLE 1.3.  

1) ( ) 1
: 3, ,

2
T R R T x x x R→ = + ∈  is a strict contraction and { }6 ;

T
F =  

2)  The function ( )1 1 1
: , 2 ,2 , ,

2 2
T T x

x

   → =      
 is 4-Lipschitzian with { }1 ,

T
F = while the function T in 

Example 1.1(3-4) are isometrics; 

3) [ ] [ ] ( ) 1
: 1, 1, , ,T T x x

x
+∞ → +∞ = +  is contractive and  .TF φ=

 

 

The following theorem is of fundamental importance in the metrical fixed point theory. 

THEOREM 1.1 [Banach Contraction Principle]. Let T be a contraction mapping, with Lipschitz constant k  

of a complete metric space X  into itself. Then T  has a unique fixed point. 

In 1969, Nadler [38] extended the Banach contraction principle for multi-valued maps and introduced the 

concept of multi-valued contraction mapping. In his result he established that a multi-valued contraction 

mapping posses a fixed point in complete metric space.  

Let ( ),X d  be a metric space. Then following Nadler [op.cit] define, 

 ( ) { :CL X A A=  is a non-empty closed subset of }.X  

 ( ) { :CB X A A=  is a non-empty closed and bounded subset of }.X  

 ( ) { :C X A A=  is a non-empty compact subset of }.X  

            For ( ), ,A B CB X∈  and x X∈  define 

 ( ) ( ){ }, inf , ; , .D A B d a b a A b B= ∈ ∈  

 ( ) ( ){ }, inf , ; .d x A d x a a A= ∈  

 ( ) ( ){ }, sup , ; , .A B d a b a A b Bδ = ∈ ∈   

            ( ) ( ){ } ( ){ }( ), max sup , ; ,sup , ; .H A B D a B a A D A b b B= ∈ ∈  
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H  is called generalized Hausdorff  distance function for ( )CL X  induced by .d  If ( ),H A B  is defined for 

( ),A B CB X∈  (resp. ( )CL X ), then the pair ( )( ),CB X H  (resp. ( ) ,CL X H ) is a metric space and H  

is called the Hausdorff  metric. 

DEFINITION  1.2 [38]. Let : 2XT X →  be a multi-valued mapping, then a point x X∈  is said to be a fixed 

point of T  if .x Tx∈  

The following lemma was proved in Nadler [op.cit]. 

LEMMA 1.1 [38]. Let ,A B  be in ( ).CB X  Then for all 0ε >  and ,a A∈   there exist b B∈  such that 

  ( ) ( ), , .d a b H A B ε≤ +  

If ,A B  are in ( ) ,C X  then one can choose a A∈  and b B∈  such that  

  ( ) ( ), , .d a b H A B≤  

The following theorem is an extension of Banach contraction principle for multi-valued mapping, which was 

obtained by Nadler [op.cit]. 

THEROEM 1.2 [38]. Let ( ),X d  be a complete metric space, and let ( ):F X CB X→  be a multi-valued 

mapping. Assume that there exist [ )0,1r∈  such that for all ,x y X∈  

  ( ) ( ), , .H Fx Fy rd x y≤  

Then there exist ,z X∈  such that .z Fz∈  

 

EXAMPLE 1.4. Let [ ]0,1X =  and :f X X→  such that  

  
( )

1 1 1
0

2 2 2

1 1
1 1

2 2

x x

f x

x x

 + ≤ ≤
= 
− + ≤ ≤


 

Define : 2XF X →  by ( ) { } ( ){ }0F x f x= U  for each .x X∈  Then one can easily check that F  is a 

multi-valued contraction mapping and the set of fixed points of F  is 
2

0, .
3

 
 
 

 

We now discuss contractive multi-functions and state a theorem, proved by Smithson [57], which extends 

Edelstein’s FPT for contractive single-valued mappings to multi-functions 

DEFINITION 1.3. An orbit ( )O x  of a multi-function ( ):T X CB X→  at the point x  is a sequence 

( ){ }1
:

n n n
x x T x −∈  where 0 .x x=  ( )O x  is called regular iff 

 ( ) ( )1 2 1
, ,

n n n n
d x x d x x+ + +≤  and ( ) ( ) ( )( )1 2 1

, , .
n n n n

d x x H T x T x+ + +≤  

DEFINITION 1.4. A multi-function T  is said to be contractive iff for each 1 2,x x X∈  with 

( ) ( )( ) ( )1 2 1 2 1 2
, , , .x x H T x T x d x x≠ <  

An immediate consequence of the definition is the following: If ( )1 1
,y T x∈  then there is an element 

( )2 2
y T x∈  such that ( ) ( )1 2 1 2

, , .d y y d x x<  

REMARK 1.1. Let T  be a point compact, contractive multi-function. Define an orbit ( )O x  by choosing 

( )1n n
x T x −∈  such that 

 ( ) ( )( ) ( ) ( ){ }1 1 1 1 1
, , inf , : .

n n n n n n
d x x D x T x d x y y T x− − − − −= = ∈  
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Since T  is contractive, the orbit ( )O x is regular. 

THEOREM 1.3 [57]. Let T  be a point closed, contractive multi-function. If there is a regular orbit ( )O x  for 

T  which contains a subsequence { }
inx  converging to 0y  such that 1 1,

inx y+ →  then 1 0 ,y y=  that is, T  has 

a fixed point. 

         There have been several extensions of known fixed point theorems for multi-valued mappings which take 

each point of a metric space ( ),X d  into a closed subset  K of .X  However, in many applications, the 

mappings involved is not a self-mapping of K. Assad and Krik [3] gave sufficient conditions for such mappings 

to have a fixed point by proving a fixed point theorem for multi-valued contraction mappings on a complete 

metrically convex metric space and by putting certain boundary conditions on the mappings. Similar results for 

multi-valued contractive mappings were obtained by Assad [2]. Itoh [23] extended the results given in Assad and 

Krik [op.cit] and Assad [2] for more general types of contraction and contractive mappings. Khan [31] extended 

the result of Itoh [op.cit] for a pair of generalized contraction and contractive mappings. He also partially 

generalized the fixed point theorem of Iseki [22] and Rus [48]. Later on Ciric [9] extend the result of Nadler 

[op.cit] by introducing the generalized multi-valued contraction. After this many Mathematician investigated and 

generalized various result on existence of fixed point for multi-valued mappings (see for instance [1], [7], [12], 

[13], [14], [19], [28], [29], [31], [32], [34], [35] [42], [44], [45],  [56],  [58] and references therein).  

 

 

2. HYBRID CONTRACTION: 

Let ( ),X d  be a metric space, :P X X→  and ( ): ,T X CL X→  the set of (nonempty) closed subset of 

.X  Consider the following conditions on T  for ,x y  in X  and some positive number 1,k <  

(1)        ( ) ( ), ,H Tx Ty kd Px Py≤  

and  

(2)       ( ) ( ) ( ) ( ) ( )1
, max , , , , , , ,

2
H Tx Ty k d Px Py D Py Ty D Px Ty D Py Tx

 ≤ +    
 

where H  is a generalized Hausdorff metric induced by d. 

The above conditions are generally termed as hybrid contractions (see for instance, [4], [39]). Note that (1) 

implies (2). We say that a point z in X  is: 

(i) A coincidence point of T  and P  iff ;Pz Tz∈  

(ii) A fixed point of T  and P  iff z Pz Tz= ∈  

and  

(iii) A hybrid fixed point iff .Pz TPz∈  

We have to emphasize that T  and P  satisfying (1) with ( ) ( )T X P X⊂  need not have a common fixed 

point in complete X  even if P and T  are continuous and commuting, that is, ,PTx TPx x X⊂ ∈ (cf. Itoh-

Takahashi [24]). We refer [30], [39], [49] and [52] for counterexamples and a good discussion on this aspect. 

Further, the condition (1) with ( ),Px x x X= ∈  contains the Nadler’s (new classic) multi-valued contraction 

[38]. Interesting generalizations of Nadler’s contraction [op. cit.] due to Ciric [op.cit], Iseki [op.cit], Ray [42] 

and Reich [44], are the special cases of (2). For example, the condition (2) with ( ),Px x x X= ∈  was first 

studied by Ciric [op. cit]. The condition (2) with :T X X→  and ( ),Px x x X= ∈  is the condition ( )21'  of 

Rhoades [46, P. 267] (see also [20], [48],) 

Hybrid fixed point theory is a recent development is the ambit of fixed point theorems for contracting single-

valued and multi-valued maps in metric spaces. Indeed the study of such maps was initiated during 1980-1983 

by Bhaskaran and Subramanyam [6], Hadzic [18], Singh- Kulshresta [54], Kaneko [29], Kaneko-Sessa [30], 

Naimpally et al. [39], Rhoades et al. [47] etc. For a history of fundamental work on this line refer to Singh and 

Mishra [55] and for more recent work on this line Beg and Azam [5], Jungck and Rhoades [27], Kaneko [28], 

Mishra- Singh and Talwar [37], Pathak et al. [40] etc. 
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Hybrid fixed point theory has potential application in Functional Inclusions, Optimization Theory, Fractal 

Graphics and Discrete dynamics for set-valued Operator (see, [10],[60]) . Recent investigations of Corley [10], 

gave a good relationship between hybrid fixed points and optimization problems. 

In particular, he has shown that a Pareto type of maximization problem is equivalent to a hybrid fixed point 

problem. So, this is an additional motivation which attracts the researchers to work in this direction.  

The following fundamental coincidence theorem for a pair of multi-valued and single-valued maps is essentially 

due to Singh- Kulshrestha [54] (see also Kulshrestha [33] and Singh-Mishra [55]). 

THEOREM 2.1 [54]. Let ( ),X d  be a metric space and ( )( ),CL X H  is the Hausdorff metric space induced 

by ,d  where ( )CL X  is the collection of all non-empty closed subset of .X  Let ( ):P X CL X→  and 

:f X X→  be such that ( ) ( )P X f X⊆  and  

 ( ) ( ) ( ) ( ) ( ) ( )1
, max , , , , , , , , ,

2
H Px Py q d fx fy d fx Px d fy Py d fx Py d fy Px

 ≤ +    
 

for all , ,x y X∈  where 0 1.q≤ <  If ( )f X  [or ( )P X ] is a complete subspace of ,X  then P  and f  

have coincidence that is , there exist a point z X∈  such that .fz Pz∈  

    Later on Singh et al. [52] proved a fixed point theorem for hybrid maps by using the concept of asymptotic 

regularity condition and investigate different sets of conditions under which the fixed point equation 

x fx Sx Tx= ∈ I  for x X∈  possesses a solution where f is a single valued map from X to X and S and T are 

multivalued maps from X to CL(X).  

 

2.1 MATKOWSKI’S CONTRACTION 

Recently Baillon-Singh [4] motivated by the work of Corley [10], Gairola et al. [17], Czerwik [11], Reddy-

Subrahmanyam [43], Singh-Gairola [51], Singh et al. [52], Matkowski [36], have introduced coordinatewise 

weakly commuting system of single-valued and multi-valued maps on the product of metric spaces and proved a 

coincidence theorem . 

In 1997, Gairola et al. [16] introduced the concept of coordinatewise asymptotically commuting systems of 

single-valued and multi-valued maps on the product of metric spaces and give a coincidence theorem for such a 

system of multi-valued and two system of single-valued maps on the product of n  metric space. We use the 

following notations. 

Let ( )ik
a  be an n n× square matrix with non-negative entries defined in Czerwik [11] and Matkowski [op.cit]. 

  ( )1 , 1,.........
1

ik

ik

ik

a i k
c i k n A

a i k

≠
= =

− =
  

  ( )11 1, 1 1,1 1, 11

11 1, 1 1,1 1, 1

,

,

t t t

i k i kt

ik t t t

i k i k

C C C C i k
c B

C C C C i k

+ + + ++

+ + + +

 + ≠
= 

− =
 

  1,.............., 1, , 1,..............,t n i k n t= − = −  

Let  ( ),
0, 1,.............. , 1,.............. 1.t

i i
c t n i n t C> = = − +  

Throughout this lecture we shall assume that ( ),
i i

X d  are metric spaces ( )( ),
i i

CL X H  the generalized  

Hausedorff  metric spaces induced by .id  Further, let iP  and iQ  stand for multi-valued  maps from 

( )1 1
...... ,.....,

n n
X X X X X= × × = to ( ) ,i

CL X  and : , 1,......, .i iT X X i n→ =  For 

( )1
,......, ,

n
X A A A⊃ = we (as in [4] use the notation ( ) ( )1 1

,......., .
n n

T A T A T A=  

DEFINITION 2.1.1 [4]. Two systems of maps { }1
,.......,

n
T T  and { }1

,.....,
n

P P  are co-ordinatewise  

commuting (or simply commuting) at a point x X∈  if and only if  

 ( ) ( )1 1
,......, ,....., , 1,2,....., .

i n i n
T Px P x P T x T x i n⊆ =  
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For 1,n =  this definition is that of Itoh-Takahashi [24]. For 1,n =  the following definition is investigated in 

[29] and [52]. 

DEFINITION 2.1.2 [4].  Two systems of maps { }1 2
,.......,T T  and { }1

,......,
n

P P  are co-ordinatewise weakly 

commuting (or simply weakly commuting) at a point x X∈ if and only if  

 ( ) ( )( ) ( )1 1
,...., , ,......., , , 1,........., .

i i n i n i i i
H T Px P x P T x T x D Px T x i n≤ =  

Two system are co-ordinatewise weakly commuting on X  if and only if they are co-ordinatewise weakly 

commuting at every point of .X  

An equivalent formulation of Definition 2.1.2 for two system of single-valued maps on X appears in [17]. 

We should remark that, in general, co-ordinatewise weakly commuting systems of maps need not to be co-

ordinatewise commuting. However, the commuting systems are necessarily weakly commuting (see [4], [17], 

[51]). 

DEFINITION 2.1.3 [16]. Two system of maps { }1
,........,

n
T T  and { }1

,........,
n

P P  are coordinate wise 

asymptotically commuting (or simply asymptotically commuting) if and only if  

 ( ) ( )( ) ( )1 1,......., , ,......., 0 ,m m m m

i i n i nH P T x T x T P x P x as m→ →∞  

whenever { }mx  is a sequence in X  such that  

 ( )m

i i i
Px M CL X→ ∈  and .m

i i iT x x M→ ∈  

DEFINITION 2.1.4 [16]. The mappings 1 1 1:T X X→  and ( )1 1 1
:P X CL X→  are asymptotically 

commuting (called compatible in [5] and [51] for 1 1 1:T X X→  and ( )1 1 1
:P X CB X→  if and only if 

( )1 1 1 1 1, 0m mH PT x T P x →  (as m →∞ ) whenever { }mx  is a sequence in 1X  such that 

( )1 1 1

mPx M CL X→ ∈  and 1 1 1.
mT x u M→ ∈  

If the map 1P  in this definition is single-valued then 1M  has just a single element 1,u  and we get the definition 

of asymptotically commuting (or compatible) single-valued maps independently introduced  by Tivari-Singh [59] 

and Jungck [26]. Since a sequence in the limiting tone is the main aspect in Definition 2.1.3-2.1.4, the name 

“asymptotically commuting maps” seems to slightly better fit to the situation that “compatible maps”. So, 

following [59], we shall henceforth prefer the name “asymptotically commuting”. 

REMARK 2.1.1. The class of asymptotically commuting maps includes commuting and weakly commuting 

maps. Commuting maps are necessarily weakly and asymptotically commuting both (see, for instance, [4], [5], 

[25], [26], [29], [50], [51], [52] and the following example). 

EXAMPLE 2.1.1. Let [ )1
1,X = ∞  and [ )2

0,X = ∞  be metric spaces with the absolute value metric. Let 

( )
2 2

2 3

1 2 1 2 1, , 1, , , , 2 1
4 2

x x
x x x Px x P x T x x

 
 = = = = −  

 
 and 

2

2 .
5

x
T x =  It can easily be verified that 

the systems of maps { }1 2
,P P  and { }1 2

,T T  are not co-ordinatewise weakly commuting but co-ordinatewise 

asymptotically commuting on 1 2.x X X= ×  Note that the above two systems are co-ordinatewise commuting 

at ( )1,0 .x =  

REMARK 2.1.2.  At any point of coincidence of two (or two systems of) maps, their commutativity, weak 

commutativity and asymptotic commutativity are equivalent at that point (see [4], [25], and [29]). 

Now we state the result proved in [17] 

THEOREM 2.1.1 [17]. Let ( ), , 1,........... ,
i i

X d i n=  be a complete metric space and assume that 

( ): , : , 1,.........
i i i i i

P X CL X S T X X i n→ → =  are continuous maps such that 

( ) ( ) ( ) ( ), 1,............ . 2.1.1
i i i

P X S X T X i n⊂ =I  
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The system { }1
............

n
P P  is asymptotically commuting with both the systems { }1

..........
n

S S and

{ } ( )1
.......... . 2.1.2

n
T T  

If there exist non-negative numbers 1b <  and ika  defined in ( )A  and ( )B  such that ( )C  and the following 

hold 

( ) ( )
( ) ( )

( ) ( )
( )

1

, , ,

, max , , max 2.1.31
, ,

2

i i i i i in

i i i ik k k k

k i i i i i i

D S x Px D T y P y

H Px P y a d S x T y b
D S x P y D T y Px=

  
  ≤   +      

∑  

for all ( ) ( )1 1
,.......... , ,.......... ,

n n
x x x y y y X= = ∈  then there exist a point u X∈  such that 1iS u Pu∈  and 

, 1,........., .i iTu Pu i n∈ =  

 

DEFINITION 2.1.5 [15]. Two systems of maps { }1
,.....,

n
T T  and { }1

,.......,
n

P P  are co-ordinatewise R-

weakly commuting at a point x X∈  if and only if  

 ( ) ( )( ) ( )1 1
,...., , ,......., , , 1,........., , 0.

i i n i n i i i
H P T x T x T Px P x RD T x Px i n R≤ = ≥ two systems 

are co-ordinatewise R-weakly commuting on X  if and only if they are co-ordinatewise R-weakly commuting at 

every point of .X  As a special case of the above definition ( )1n =  we have the following. 

DEFINITION 2.1.6 [15]. The mappings  1 1 1:T X X→  and ( )1 1 1
:P X CL X→  are R-weakly commuting if 

and only if  

 ( ) ( )1 1 1 1 1 1 1 1
, , , 0.H PT x T Px RD Px T x R≤ ≥  

This example illustrate non co-ordinatewise weakly commuting maps are co-ordinatewise R-weakly commuting. 

 

EXAMPLE 2.1.2.  Let [ )1
1,X = ∞  and [ ]2

0,1X =  be metric spaces with the absolute value metric. Let 

( )1 2
, ,x x x=  

 { } { }2

1 1 2 1 1 2 2, 0,1 , 2 1, 1 ;P x x P x T x x T x x= = = − = −  

then  

 
( ) ( )( ) { } ( ){ }( )

( ) { }( ) ( )

22

1 1 1 2 1 1 2 1 1 1

2 2

1 1 1 1 1 1 1

, , , 2 1 , 2 1

2 1 2 2 1, 2 , ,

H T P x P x P T x T x H x x

x D x x D T x P x

= − −

= − = − =
 

and 

 ( ) ( )( ) { } ( ){ }( ) ( )2 2 1 2 2 1 2 2 2 2 2, , , 0,1 , 0,1 0 , .H T P x P x P T x T x H D T x P x= = ≤  

The systems of maps { }1 2
,T T  and { }1 2

,P P  are thus co-orddinatewise R-weakly commuting with 2R =  but 

not co-ordinatewise weakly commuting. 

REMARK 2.1.3. Co-ordinatewise weakly commuting maps are co-ordinatewise R-weakly commuting, however, 

R-weakly commutativity implies co-ordinatewise weak commutativity only when 1.R ≤  

 This example illustrate non co-ordinatewise asymptotically commuting maps are co-ordinatewise R-

weakly commuting. 

EXAMPLE 2.1.4. Let [ ]1 2
2,6X X= =  be a metric spaces with usual metric such that 
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 ( )
{ }
{ }

1

1 1 2 1

1
1

2 3

, 4,5 3 ;

21
3 6

12

if x

P x x if x

x
if x


 <


= =
 +  < ≤  

 

 ( )
{ }
{ }

2

2 1 2 2

2
2

2 3

, 4,5 3 ;

21
3 6

12

if x

P x x if x

x
if x


 <


= =
 + < ≤


 

 ( )
1

1 1 2 1 1

1
1

2 2

, 2 2 3 ;

2
3 6

3

if x

T x x x if x

x
if x


 =


= < ≤

 < ≤


 

 ( )
2

2 1 2 2 2

2
2

2 2

, 2 2 3 .

2
3 6

3

if x

T x x x if x

x
if x


 =


= < ≤

 < ≤


 

To see that the systems of maps { }1 2
,T T  and { }1 2

,P P  are co-ordinatewise non asymptotically commuting, 

consider a decreasing sequence ( ){ }1 2,m mx x  in 1 2X X×  such that 3 4, 1,2ix i< < =  and 

( ) ( )1 2lim , 3,3 .m mx x →  Then 

 
( ) ( )
( ) { } ( ) { }

1 1 2 2 1 2

1 1 2 2 1 2

, 2, , 2,

, 2 , , 2 ,

m m m m

m m m m

T x x T x x

P x x P x x

→ →

→ →
 

 

( ) ( )( )
( ) ( )( )
( ) ( )( ) { }

1 1 1 2 2 1 2

2 1 1 2 2 1 2

1 1 1 2 2 1 2

, , , 4,

, , , 4,

, , , 2 ,

m m m m

m m m m

m m m m

T P x x P x x

T P x x P x x

P T x x T x x

→

→

→

 

and  

 ( ) ( )( ) { }2 1 1 2 2 1 2, , , 2 .m m m mP T x x T x x →  

Moreover, the systems of maps are co-ordinatewise R-weakly commuting. 

 We, motivated by the work of Baillon-Singh [4] and Gairola-Mishra-Singh [16], prove coincidence 

theorems for Ciric-Matkowski type hybrid contractive condition for systems of multi-valued and single-valued 

maps. 

THEOREM 2.1.2 [15]. Let ( ), , 1,....,
i i

X d i n=  be complete metric space and 

( ), : , : , 1,.....,
ii i i i

P Q X CL X T X X i n→ → =  are continuous maps such that 

(i) ( ) ( )( ) , 1,......., ;
i i i

P X Q X T X i n⊂ =U  
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(ii) The system { }1
,........,

n
T T  is R-weakly commuting with the systems { }1

,........., .
n

P P  and 

{ }1
,......, .

n
Q Q  

If there exist non negative numbers 1b <  and ika  defined in ( ) ( ),A B and ( )C  and the following hold: 

(iii) ( ) ( )
( ) ( )

( ) ( )1

, , , ,

, max , , max ,1
, ,

2

i i i i i in

i i i ik k k k

k i i i i i i

D T x Px D T y Q y

H Px Q y a d T x T y b
D T x Q y D T y Px=

  
  

≤   
+      

∑  

for all ( ) ( ) ( ) ( )1 1
,......, 1, , ,......., 1, ,

n n
x x x x n X y y y y n X= = ∈ = = ∈  then there exist a point 

( )1,u u n X= ∈  such that  

(iv) ,i i iTu Pu Qu∈ I  1,......., .i n=  

COROLLARY 2.1.1  [15]. Let ( ), , 1,....,
i i

X d i n=  be complete metric space and 

( ), : , 1,.....,
ii i

P Q X CL X i n→ =  be multivalued maps such that 

( ) ( )
( ) ( )

( ) ( )1

, , , ,

, max , , max ,1
, ,

2

i i i i i in

i i i ik k k k

k i i i i i i

D x Px D y Q y

H Px Q y a d x y b
D x Q y D y Px=

  
  

≤   
+      

∑  

for all  ,x y X∈  , where [0,1)b∈  and ika  defined in ( ) ( ),A B and ( )C  then the system of multivalued 

maps ( )1
,......,

n
P P  and ( )1

,......,
n

Q Q  has a common fixed point. 

REMARK 2.1.4  The result of corollary   includes a multitude of contractive condition for single and 

multivalued maps (see,  for instance [9], [11], [28], [38], [47], [48], [51], [52] and [54] ). The following result in 

corollary  with ( ), ( , ),
i i

Y d X d=
   

,   ,  1,...,i iP P Q Q i n= = =
  

and 111,  max{ , } ( ).n a b k say= =
 

 

COROLLARY 2.1.2. Let  ( ),Y d
 
be a complete metric space and , : ( ).P Q Y CL Y→ oif there exists 

,  0 1k k< <
 
such that for all  , .x y Y∈

 

( ) 1
, max ( , ), ( , ), [ ( , ) ( , )] ,

2
H Px Qy k d x y D x Px D x Qy D y Px

 ≤ + 
   

then   and P Q   have a cmmon fixed point. 

 

2.2 BRANCIARI CONTRACTION: 

 

We  need the following definitions before stating the reults 

DEFINITION 2.2.1 [53]. Maps XXS →:    and     )(: XCLXT →  are said to be (IT)-commuting at a 

point Xv∈  if TSvSTv ⊂ . Further TS and  are (IT)-commuting on X  if they are (IT)-commuting at 

each point Xv∈ .  

We remark that the (IT)-commutativity of a hybrid pair ),( TS  at a point v  is more general than its 

compatibility (cf. [53]) and weak compatibility at a point v. Maps TS and  are commuting at Xv∈  when 

TSvSTv = . Clearly a commuting hybrid pair of maps is (IT)-commuting and the reverse implication is not true 

(cf. [24], see also [53] and [55]). 

DEFINITION 2.2.2 [53]. Let : ( )A X CL X→  and : .S X X→  Then A  and  S  will satisfy the property 

(E.A) if there exists a sequence }{ nx  in X   such that 

 .=limand)(=lim MtSxXCLMAx n
n

n
n

∈∈
∞→∞→  
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Motivated by Singh-Hashim [53] and Branciari [8]. Rawat [41] proved the following results for the hybrid 

contraction. 

Define { : :f f R Rφ + += →  is a Lebesgue integrable mapping which is summable, non-negative} and f  

satisfies the following inequality 

(i) ( )
0

0

s

f t dt >∫   for each 0.s >  

 

First we present the basic result for hybrid pair of maps proved in [41]. 

THEOREM 2.2.1. Let ( , )X d  be a metric space and  A : ( )   and    :X CL X S X X→ →   be such that 

(2.2.1)  AX SX⊂ ; 

(2.2.2)   the pair ( , )S A   satisfies the property (E.A) 

(2.2.3)  
( , )

0
( ) ( , )   when  ( , ) 0

H Ax Ay

s ds m x y m x yϕ < >∫ , where  

{ }( , ) [ ( , ) , ] [ ( , ) ( ,. )]

0 0 0
( , ) max ( ) , ( ) , ( )

d Sx Sy d Sx Ax dSy Ay d Sx Ay d Sy Ax

m x y s ds s ds s dsϕ α ϕ α ϕ
+ +

= ∫ ∫ ∫ , 

0 1α≤ <  and : R Rϕ + +→  is a Lebesgue  integrable mapping which is summable, non-negative and satisfy 

the condition 

 (2.2.4)  
0

( ) 0 for each  0s ds
ε
ϕ ε> >∫ .                                                

 If  ( )   or  ( )A X S X  is a complete subspace of  then  ( , )X C S A  is nonempty. Further A  and  S  have a 

common fixed point provided that SSz Sz=  and  A  and  S  are (IT)- commuting at ( , )z C S A∈ . 

Now we state the result for a hybrid quadruple of maps on an arbitrary nonempty set 

THEOREM   2.2.2.  Let ( , )X d  be a metric space and  A,B : ( )   and    , :X CL X S T X X→ →  

 such that  

(2.2.5)    and   AX TX BX SX⊂ ⊂ , 

(2.2.6)  One of the pair ( , )  and  ( , )S A T B   satisfies the property (E.A) 

(2.2.7)
( , )

0
( ) ( , )   when  ( , ) 0

H Ax Ay

s ds m x y m x yϕ < >∫ , where  

         { }( , ) [ ( , ) , ] [ ( , ) ( , )]

0 0 0
( , ) max ( ) , ( ) , ( )

d Sx Ty d Sx Ax dTy By d Ty Ax d Sx By

m x y s ds s ds s dsϕ α ϕ α ϕ
+ +

= ∫ ∫ ∫ , 

0 1α≤ <  and : R Rϕ + +→  is a Lebesgue  integrable mapping which is summable, non-negative and satisfy 

the condition 

 (2.2.8)   
0

( ) 0 for each  0s ds
ε
ϕ ε> >∫ .                                                

If ( )  or  ( )  or  ( )  or  ( )  is a complete subspace of A X B X S X T X X  then ( , )C S A  and ( , )C B T  

are nonempty. Further, 

(I)    and A S  have a common fixed point Su  provided that SSu Su=  and ,A S  are (IT)-commuting at 

( , )u C S A∈ . 

(II)     and B T  have a common fixed point Tv  provided that TTv Tv=  and ,B T  are (IT)-commuting at 

( , )v C T B∈ . 

(III) ,  ,   and A B S T  have a common fixed point provided that (I) and (II) are true. 

Now  we are stating the another version of the above Theorem. 

THEOREM 2.2.3.   Let ( , )X d  be a metric space and  A,B : ( )   and    , :X CL X S T X X→ →  such 

that  

(2.2.9)     and   AX TX BX SX⊂ ⊂ , 

(2.2.10)  One of the pair ( , )  and  ( , )S A T B   satisfies the property (E.A) 
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(2.2.11)  
( , )

0
( ) ( , )   when  ( , ) 0

H Ax Ay

s ds m x y m x yϕ < >∫ , where  

         { }( , ) [ ( , ) ( , )] [ ( , ) ( , )]
1

2 20 0 0
( , ) max ( ) , ( ) , ( )

d Sx Ty d Sx Ax d Ty By d Ty Ax d Sx By

m x y s ds s ds s dsαϕ ϕ ϕ
+ +

= ∫ ∫ ∫ , 

0 2α≤ <  and : R Rϕ + +→  is a Lebesgue integrable mapping which is summable, non-negative and satisfy 

the condition 

 (2.2.12)   
0

( ) 0 for each  0s ds
ε
ϕ ε> >∫ .                                                

If ( )  or  ( )  or  ( )  or  ( )  is a complete subspace of A X B X S X T X X  then ( , )C S A  and ( , )C B T  

are nonempty. Further, 

(Ia)    and A S  have a common fixed point Su  provided that SSu Su=  and ,A S  are (IT)- 

         commuting at ( , )u C S A∈ . 

(IIa)     and B T  have a common fixed point Tv  provided that TTv Tv=  and ,B T  are   

           (IT)-commuting at ( , )v C T B∈ . 

(IIIa) ,  ,   and A B S T  have a common fixed point provided that (I) and (II) are true. 

REMARK 2.2.1.  Every contractive condition of integral type automatically include a corresponding contractive 

condition not involving integrals by setting ( )   over  s R Rϕ + += . 

 

 

REFERENCES 

1. M. Abbas and D. Doric, A common End point theorem for set-valued generalized ( ),ψ ϕ -weak 

contraction, fixed Point Theory and Appl., Vol. 2010, Article ID 509658, 8 pages (2010). 

2.  N. A. Assad, Fixed point theorems for set-valued transformation on compact sets, Boll. Un. Mat. Ital., 

7(4) (1973), 1-7. 

3. N. A. Assad and W. A. Krik, Fixed point theorems of set-valued mapping of contractive type, Pacific J. 

Math., 43 (1972), 453-462 

4. J. B. Baillon and S. L. Singh, Nonlinear hybrid contractions on product spaces, Far East J. Math. Sci., 

1(1993), 117-128.  

5. I. Beg and A. Azam, Fixed points of asymptotically regular multi-valued mappings, J. Austral. Math. 

Soc. Ser. A 53 (1992), no. 3, 313-326. 

6. R. Bhaskaran and P. V. Subrahmanyam, Common coincidences and fixed points, J. Math. Phys. Sci., 

18(1984), 329-343. 

7. R. K. Bose and R. N. Mukherjee, Common fixed points of some multi-valued mappings, Tamkang J. 

Math., 8 (1977), 245-249. 

8.  A. Branciari, A common fixed point theorem for mapping satisfying a general contractive condition of 

integral type, Internat. J. Math. Math. Sci., 29(9) (2002), 531-536. 

9. Lj. B. Ciric, Fixed points of generalized multi-valued contractions, Mat. Vasnik, 9(24), (1972), 265-

272.  

10. H. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 

120(1986), 528-532. 

11. S. Czerwik, A fixed point theorem for a system of multi-valued transformations, Proc. Amer. Math. 

Soc., 55 (1976), 136-139. 

12. B. Damjonvic and D. Doric, Multi-valued generalizations of the kannan fixed point theorem, Filomat, 

25(1), (2011), 125-131. 

13.  L. S. Dube, A theorem on common fixed points of multi-valued mapping, Ann. Soc. Sci. Bruxelles Sir. 

I, 89 (1975), 463-468.  

14. L. S. Dube and S. P. Singh, On multi-valued contraction mapping, Bull. Math. Soc. Sci. Math. R. S. 

Roumanie (N.S), 14 (1970), 307-310. 

15. U. C. Gairola and P. S. Jagwan, Coincidence theorem for multi-valued and single-valued systems of 

transformations, Demonstratio Mathematica, XLI (1) (2008),129-136. 

16.  U. C. Gairola, S. N. Mishra and S. L. Singh, Coincidence and fixed point theorems on product spaces, 

Demonstratio Math., 30(1) (1997), 15-24. 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

357 

17.  U. C. Gairola, S. L. Singh and J. H. M. Whitfield, Fixed point theorems on product of compact metric 

spaces, Demonstratio Math., 28 (1995), 541-548. 

18. O. Hadzic, A coincidence theorem for multi-valued mappings in metric spaces, Studia Univ. Babes-

Bolyai Math., 4 (26) (1981), 65-67. 

19. T. Hicks and B. E. Rhoades, Fixed point and continuity for multi-valued mappings, Internat. J. Math. 

Math. Sci., 15 (1992), 15-30. 

20. T. Hicks and B. E. Rhoades, Fixed point and continuity for multi-valued mappings, Internat. J. Math. 

Math. Sci., 15 (1992), 15-30. 

21.  C. J. Himmelberg, Fixed points of compact multi-function, J. Math. Anal. Appl., 38 (1972), 205-207.  

22. K. Iseki, Multi-valued contraction mappings in complete metric spaces, Math. Seminar Notes, Kobe 

University, 2 (1974), 45-49. 

23. S. Itoh, Multi-valued generalized contractions and fixed point theorems, Comm. Math. Univ. Carolina, 

18(2) (1977), 247-258. 

24. S. Itoh and W. Takahashi, Single-valued mapping, multi-valued mappings and fixed point theorems, J. 

Math. Anal. Appl., 59(3) (1977), 521-514. 

25. G. Jungck, Compatible mapping and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 285-

288. 

26. G. Jungck, Common fixed point for commuting and compatible maps on compacta, Proc. Amer. Math. 

Soc., 103(3) (1988), 977-983. 

27. G. Jungck and B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. Pure 

Appl. Math., 3 (29) (1998), 227-238. 

28. H. Kaneko, Single-valued and multi-valued f-contractions, Boll. Un. Mat. Ital., A (6), 4(1), (1985), 29-

33. 

29. H. Kaneko, A common fixed point of weakly commuting multi-valued mappings, Math. Japon., 5(33), 

(1988), 741-744. 

30. H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and single-valued 

mappings, Internat. J. Math. Math. Sci., 12(2) (1989), 257-262. 

31. M. S. Khan, Common fixed point theorem for multi-valued mappings, Pacific J. Math., 95(2) (1981), 

337-347.  

32. T. Kubiak, Two coincidence theorems for contractive type multi-valued mappings, Studia Univ. 

Babecs-Bolyai Math., 30 (1985), 65-68.  

33. C. Kulshrestha, Single-valued mappings, multi-valued mappings and fixed point theorems in metric 

spaces, Ph. D Thesis (Supervised by Prof. S. L. Singh) Garhwal University, Srinagar, 1983. 

34. T. C. Lim, On fixed point stability for set-valued contractive mappings with application to generalized 

differential equations, J. Math. Anal. Appl., 110 (1985), 436-441. 

35. Y. Liu, Jun Wu and Zhixizng Li, Common fixed points of single-valued and multivalued maps, 

Internat. J. Math. Math. Sci., 19(2005), 3045-3055. 

36. J. Matkowski, Integrable solutions of functional equations, Dissert. Math. (Roz-Prawy Mat.), C 27, 

Warszawa, 1975.  

37. S. N.  Mishra, S. L. Singh and R. Talwar, Nonlinear hybrid contractions on menger and uniform spaces, 

Indian J. Pure Appl. Math., 10(25) (1994), 1039-1052. 

38. S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488.. 

39. S. A. Naimpally, S. L. Singh and J. H. M. Whitfield, Coincidence theorems for hybrid contractions, 

Math. Nachr., 127(1986), 177-180. 

40. H. K. Pathak, S. M. Kang and Y. J. Cho, Coincidence and fixed point theorems for nonlinear hybrid 

generalized contractions, Czechoslovak Math. J., 48(123) (1998), no.2, 341-357. 

41. A.S.Rawat, A study of coincidence and fixed points in metric and banach spaces,  D.Phil Thesis 

(Under the supervison of  U.C.Gairola) H.N.B.Garhwal University, Srinagar Garhwal, 2010. 

42. B. K. Ray, On Ciric’s fixed point theorem, Fund. Math., 94(1977), 221-229 

43. K. B. Reddy and P. V. Subrahmanyam, Allman’s contractions and fixed points of multi-valued 

mappings, Pacific J. Math., 99(1982), 127-136. 

44.  S. Reich, Fixed points of multi-valued of contractive functions, Boll. Un. Mat. Ital., 5(1972), 26-42. 

45. S. Reich, Fixed point theorems for set-valued mappings, J. Math. Anal. Appl., 69 (1979), 353-358. 

46. B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. A. M. S., 226 

(1977), 257-290. 

47. B. E. Rhoades, S. L. Singh and C. Kulshrestha, Coincidence theorems for some multi-valued mappings, 

Internat. J. Math. Math. Sci., 7(2) (1984), 429-434. 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

358 

48. I. A. Rus, Fixed point theorem for multi-valued mappings in complete metric spaces, Math. Japon., 20 

(special issue) (1975),21-24.  

49. K. P. R. Sastry, I. H. N. Rao and K. P. R. Rao, A fixed point theorem for multi-maps, Indian J. Phy. 

Natur. Sci., 3(sec. B) (1983), 1-4. 

50. S. Sessa, On weak commutativity condition in fixed point considerations, Publ. Inst. Math. (Beograd), 

32(46) (1982), 149-153. 

51. S. L. Singh and U. C. Gairola, A general fixed point theorem, Math. Japon, 36(1991), 481-801.  

52. S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of nonlinear hybrid contractions, 

Internat. J. Math. Math. Sci., 12(1989), 247-256. 

53. S.L.Singh and Amal.M.Hashim, New coincidence and fixed point theorems for strictly contractive 

hybrid maps, Austral. J. Math. Anal. Appl., 2(1) (12) (2005), 1-7. 

54.  S. L. Singh and C. Kulshrestha, Coincidence theorems in metric spaces, Indian J. Phy. Natur. Sci., 

2(1982), 19-22. 

55. S. L. Singh and S. N. Mishra, Nonlinear hybrid contractions, J. Natur. Phys. Sci., 5/8 (1991/94), 191-

206. 

56. S. L. Singh, S. N. Mishra, R, Chugh and R. Kamal, General common fixed point theorems and 

applications, J. Appl. Math., Vol. 2012, Article ID 902312, 14 pages. 

57. R. E. Smithson, Fixed point for contractive multi-function, Proc. Amer. Math. Soc., 27 (1971), 192-

194. 

58. E. Tarafdar, Dulity in fixed point theory of multi-valued mappings and application, J. Math. Anal. 

Appl., 63 (1978), 371-376. 

59. B. M. L. Tivari and S. L. Singh, A note on recent generalizations of Jungck contraction principle, J. 

UPGC. Acad. Soc., 3(1) (1986), 13-18. 

60. R. Wegrzyk, Fixed point theorem for multi valued functions and their applications to functional 

equations, Dissert. Math. (Rozprawy Mat.), CCI, 1982. 

 

 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

