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Abstract

The present paper deals with some Coupled fixed point theorem for mapping having mixed monotone property
in Partially Ordered Metric space.
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1 Introduction:

The fixed point of mapping in ordered metric spaces are of great use in many mathematical problems in
applied and pure mathematics. The first result in this direction was obtained by Ran and Reuring’s [2]; in this
study the authors present some applications of their obtained results of matrix equations. In [3], Nieto and Lopez
extended the result of Ran and Reuring’s [5],for non-decreasing mappings and applied their result to get a unique
solution for a first order differential equation. While Agrawal et al.[6] and O’Regan and Petrutel [7] studied
some results for generalized contractions in ordered metric spaces.

The notion of coupled fixed point was introduced by Chang and Ma [1]. Since then the concept has
been of interest to many researchers in metrical fixed point theory. Bhaskar and Lakshmikantham [4] established
coupled fixed point theorem in metric space endowed with partial order by employing the following
Contractivity condition:

For a mapping F' : X x X — X there existk € (0,1) such that

d(F(x, ), F(u,u))< %[d(x,u) +d(y,v] forall xy,u,vin X, x> u & y <v

Harjani et.al [9]established some fixed point theorem in partially ordered metric spaces by using a contractive
condition for a rational typei.e. F': X —> X , there exist some &, €[0,1]wither + <1 such that

d(F(x, y)) < a{d(x’ Fx)d(y’Fy))} + ,Bd(x,y)For allx,yin Xandx #y
d(x.y)

L. Ciricet. al.[13] proved coupled fixed point theorem in partially ordered metric spaces by employing
some notions of Bhaskar and Lakshmikantham [4] as well as rational type contractive condition. Later
Shatanawi, w [11], Abbas M Khan, AR Nazir T [10] proved coupled fixed point theorem in generalised metric
space. Jay C. Mehta M. L. Tosh [12] ,RamakantBhardwaj [14]proved coupled fixed point theorem in partially
ordered metric space.

In this paper,we derive new coupled fixed point theorem for mapping having mixed monotone
property in partially ordered metric space.

2 Preliminaries:
We recall the definitions and results that will be needed in the sequel.

Definition 2.1: A partially ordered set is a set P and a binary relation <, denoted by (X ,S) such that for all
a,b,ce P
i. a < a, (reflexivity)
ii. a<b and b <c= a < c (transitivity)
iii. a<b and b < a= a=b(anti-symmetry)
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Definition 2.2:A sequence {x,} in a metric space (X, d) is said to be Cauchy sequence if lim,_,, d(x,, x,,) =
0 forall n,m>¢

Definition 2.3: A metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent.
Definition 2.4: Let (X ,S) be a partially ordered set and F': X x X — X . The mapping F is said to has the
mixed monotone property if F(X, y) is monotone non- decreasing in x and is monotone non increase in y, that is
for x,ye X

Vx,,x, € X,x, <x, = F(x,,y)< F(x,,y) and

Vyp, € X,y <y, = Floy)2 Flx,y,)
Definition 2.5: (X ,d )be a metric space. An element (x, y) € X x X is said to be a coupled fixed point of the
mapping F: X x X > X if F(x,y)z X andF(y,x):y

3. Main Result
Let (X ,S)be a partially ordered set and d be metric on X such that (X, d) is a complete metric space.

We also endow the product space X X X with the following partial order.
For all (x,y),(u,v)e XxX, (u,V)S (x,y)<:> xXZ2u,y<v
Theorem 3.1: Let (X R S)be a partially ordered metric set and suppose that there exist a metric d on X such that

(X; d) is a complete metric space. Let /' : X x X — X be a continuous mapping having the mixed monotone
property such that for some &, 3,7 €[0,1) for all x, y, u, vin X, X # U we have

d(x, F(x, ))d (u, F(u,v)) _ d(u, F(x,)d(x, F(u,))
d(F(x,y),F(u,v))S a{ d(x,u) + d(x,u)

+ pld(x,u)f

)/{d(x F(x, y))+d(x F(u, v))+d(u F(x, y))+d(u F(u, v))}

Where @+ B+47 <1, then F has a coupled fixed pointin X. .
Proof: choose X,,), € X X X and set
X = F(xo » Yo ) and Y = F(yo »Xo )and in general
2 =Flx,.y,)and y,, =F(y,.x,) (3.12)
with  x, < F(x,,1,)=X, Gay)and ¥, = F(y,,%,)= ¥, (say) (3.13)

By iterative process above
X, :F(xl’yl)and Ya :F(yl’xl)
Therefore F> (xo Vo ) = F(F(xo Vo) F (35X, )) F(

y) X, and
Fz(yo,xo):F(F(yo,xo),F(xo,yo ) (yl,xl) Y2
)=x
)=y

Due to the mixed monotone property of F; we obtain
X, =Fz(xo,yo)zF(xl,yl)>F(xo,yo
Y2 :Fz(yoaxo):F(ylaxl) ()’O’XO

In general, we have forn e N

X =F"“(xo,yo)=F(F"(xo,yo>,F"(yo,xo))
Vsl =F"+l(y0,x0):F(F"(yo,xo),F"(xO,yO))

It is obvious that

xOSF(xO,yO):XlSFz(xo,yo):xzﬁ .......... SF"(X0,Y0) =X, S eevenene and
Vo 2 F(34,%,) =3 2 F2 (10, X0 )= ¥y > evves ZF"(Y9:X0) =Yy Zevevennnn

Thus by mathematical induction principle, we have for ne N
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Xy SX SXy S SX, SX,0 S
............ (3.1.4)
Vo2V ZVy Zeeeeinnns 2V 2V Deeeenns

Therefore we have by condition (3.1.1) that
d(an’ ) (F(xn’yn) F('xn l’yn 1))

cu { ERVICRES) (CA A CAN ) ) d(xnl,Fm,y,,))d(x,,,F(x,,l,ynl))}

d(x X, ) d(x,,%,.,)

+Bld(x,.x, )i+ rld(x, Fx, y N+d(x,, Fx,0,9,0)+d(x, 0 F(x,.p,))+dx,  F(x,0,0,0))

<q { n+l) n1> )+d(xn—1’xn+l)d(xn’xn)}
d(x,,x, )
+ Ald(x )} {( x,0)+d(x,x, ) d(x,x,, ) vd(x, L))
Sad(xn’xn+l)+ { ( ) n—l)}+7{d( KXo n+1) (nl’ ) (xn’an) (nl’xn)}
< (a + 27)d(xn X i1 )+(,B+ 27)d(xnaxn—1)
= a’(xn,xm)S(l_’B;——_z;/jd(xn,xn_l) (3.1.5)

Similarly since y,_; 2 yn and X, _, _x , from (3.1.1) we have
d(y,.9,.)=dF(,.x,.).F(3,.x,))
<y {d(yon Do DA F o) | A0 Fynx, DA, F (y,,,xn))}
d(y,.1,,) d(y,.1,,)
{d(yn lﬁyn)}
+7{d Vo I,F(yn b X, N+dW,  F,x))+d(y, F(y,0x,))+d (3, F(3,,x,)}
Sa{d Visd) yn,yn+1)+d(yn,yn)d(yn I,ym)}
ynlﬁyn (ynl7yn)
+ﬂ{d yn l’yn)} { ( n— l’yn)+d(yn l’yn+l)+d( n’yn) d(yn’yn+l)}
a{d(yn’ynﬂ)} { (ynl’yn)} { (ynl’yn)+d(ynl’yn)+d(yn’yn+l)+d(yn’yn+l)}
Y

+2
2 d(y,.,.)s (lﬁ jd( o Vut) (3.1.6)

IA

Adding (3.1.5) and (3.1.6

-2
6) we get
+2 +2
d( n+l +dyn’yn+1 ( ﬂ }; j n’ nl)+[qu(yn’yn—l)
-2y l-a-2y

p+2y ]

1 o— 2}/ n1)+d(yn’ynl)]

B+

1—a—27/

Let us denote /1 = and d(x xn+l)+d(yn,yn+l)by d, thend, <hd, |

Similarly it can be proved that d, | < h.d,_,
Therefored, <h.”d,_, , by repeating we get
d <hd _ <h’d, ,<..... <h'd, (3.1.7)
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This implies that limd, =0

n—>0
Thus limd(x,.,,x,)=1limd(y, ,,»,)=0
n—»o n—
For each m > n, we obtain by (3.1.7)and the repeated application of triangular inequality that

d(xn 2 xm ) < d(xn ’ xn+l )+ d(xn+l 2 xn+2 )+ d(xn+2 ° xn+3 )+ d('xn+3 > xn+4 )+ """" + d(x X ) and

m=1°>"m

d(yn’ym)S d(yn’ynH)+d(yn+l’yn+2)+d(yn+2’yn+3)+d(yn+3’yn+4)+ """" +d(ymfl’ym)
Adding these we get

d(x,.x,)+d(y,.»,)<ld(, 5. )+d,.9,.)]

+ [d(xn+1 > X2 )+ d(yn+1 YV ni2 )]
+ [d(xn+2 > Xi3 )+ d(yn+2 > Vi3 )]
+ (xn+3 > X4 )+ d(yn+3 > Vnia )]

+

+ [d(xm—l ’xm )+ d(ym—l 9ym )]
sh”+h“*+h“2+h“3+m+hm4ho

<
1-n"

Therefore {xn }and { " }are Cauchy sequences in X. Since X is complete metric space, there exist X,y € X

dy—>0, asn—oo

such that limx, =xandlimy, =y
S

n—>0 n

Thus by taking limit 7 — oo in equation(3.1.2), we get
x=limx, =lim F(x,H Vo ) =F lim(x,H Vo ) = F(x,y)and
n—o n—x

y=Ilimy, =lim F(ynfl,xnfl): Flim(yH,xH): F(y,x)

Therefore x = F(x,y)& y= F(y,x)
Thus F has a coupled fixed point in X.

Theorem 3.2: Let (X ,S)be a partially ordered metric set and suppose that there exist a metric d on X such that

(X; d) is a complete metric space. Let /' : X x X — X be a continuous mapping having the mixed monotone
property on X, such that for some &, ,B, 1, oe [0,1) forall x, y, u, vin X, X # U with

d(x, F(x,y))d (u, F(u,v))d (x, F (u,v)) + d(x,u)d(u,F(x,y))d(u,F(u,v))}
A Fu)s a{ [+ o, o ), Fa,0)

+pld(x.F(x.p)+ dlu. Fu.v)}

N n{d(x,F(x,y))d(u,,F(u,v))}

d(x,u) (3.2.1)
+ 5{d(x,u)}
, 200+ 2 +1n+0 <1 thenF has a coupled fixed point in X.
Proof: choose x,,y, € X x X and set
x, = F(x,,v,)and y, = F(y,,x, )and in general
X = F(x,.,)and v, =F(y,.x,) (322)
with  x, < F(x,,v,)=x, (say)and y, > F(y,,x,)= y, (say) (3.2.3)

By iterative process above

Xy :F(xla%)and Vs :F(yDXI)
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Therefore F2(xy, ¥, )= F(F(xy, ¥ ) F(34,%,)) = F(x,,,) = x, and

FZ(yoaxo):F(F(yoaxo)aF(xoayo)):F(ylaxl):yz

Due to the mixed monotone property of F; we obtain

Xy :Fz(xoayo):F(xlaJﬁ)ZF(xmyo)
V2 :FZ(J’()axo):F(ylaxl)SF(yoaxo)

In general, we have forn e N

Xl =F"+1(x0,y0)=F(F"(xo,yo),F”(yO,xo))
Yo = F" (30:%0 ) = F(F" (g, X ) F" (x5, ,))

It is obvious that

2 n
Xy SF(x0,70) =%, S F*(X0,70) =Xy S v, SF"(X),Y0) =X, S
and
2 n
Vo 2 F(34,%,)= 3, 2 F2(14,%0) = ¥y = oo ZF"(Y0:X0) =Yy Zeveennn
Thus by mathematical induction principle, we have for ne N
<X SXx, S <X, <X, S
............ (3.1.4)
Vo2V 2ZVy 2o Z Y, Z Ve Z e

Therefore we have by condition (3.2.1) that
d(x,.x,)=d(F(x,.9,). F(x,,.,,))

d(x,. F(x,.y,)d(x, . F(x, 0.9, )M (x,. F(x,1.9,.))
+d(x,x, Jd(x,  F(x,p)dx,  F(x,.,.0))
[d(xn Xy )]2 + d(xn ’F(xn—l’yn—l))d(xn—l ’F(xn—l7yn—1))

+ B, F(x,,3,0)+d(x, 0, F(x, o y,0)))
4 d(xnaF(xnayn))d(xn—lsF(xn—layn—l))
7 b, ol 5, )
d(xn | )d(xn—l s Xy )d(xn s Xy )+ d(xn X 1 )d(xn—l > Xt )d(xn—l s Xy )
[a(x,,x,)] +d(x,.x,)d(x,..x,)
IB n+l) ( n— l’xn )}

{ X, n 1%, )}+5{d(xn,xn1 )}

a Xno15X n+l)}+ﬂ{ ( n+1)+d(xn l’xn)}+n{d(xn’xn+l)}+5{d(xn’yn)}
a+pf+0

d , <—F——dlx,,x,_ 325
('xn+1 xn) l—(a+ﬁ+77) (xn X 1) ( )
Similarly since y _, =2y, andx, , <x, ,from(3.2.1) we have
a+p+o
d\y,y,.)<S| ————dW,.y,. 3.2.6
W) (1—(a+ﬁ+77)} W 2) (3.26)

Adding (3.2.5) and (3.2.6) we get
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a+p+o a+p+0
d( n+1)+d( rnynJrl)S d(xn’xnfl)-’_ d(yn’yn—l)

I-(a+p+n) I-(a+p+1n)
a+p+0o
=| ————d\x, ,x _, )+d\y,,y,_
L s, )
a+p+0o

Let us denote /1 = and d(x,,x,.,)+d(y,,y,., )by d, then d, <hd,

l-(a+p+n)
Similarly it can be proved that d, | < h.d, ,

Therefored, < h.>d,_, , by repeating we get

d <hd,  <h’d, ,<.... <h'd, (3.2.7)
This implies that limd, =0
n—»0

Thus limd(x,,,,x,)=limd(y,.,,»,)=0
n—>0
For each m>n, we obtaln by (3.2.7)and the repeated application of triangular inequality that
d(xn’ )S d(xn’xn+l)+d(xn+l’ n+2)+d('xn+2’ n+3)+d( n+3’ n+4)+ """" +d(xm l’ )and

d(yn’ym )S d(yn’ynH )+ d(yr1+l’yn+2 )+ d(yr1+2’yn+3 )+ d(yr1+3’yr1+4)+ """" + d(ym—l’ym)
Adding these we get

d(x,.x,)+d(y,.y,)<ld(x,.x,.)+d(,.7,.)]
+ [d(xn+l > Xpi2 )+ d(yn+1 > Vnr2 )]
+ [d( KXnr2>Xni3 )+ d(yn+2 > V3 )]
+[d( n+3’xn+4)+d(yn+3’yn+4)]

+[d(xm l’ )+d(ym l’ym)]
s[h”+h’”‘+h’”2+h’”3+...+h’”"]d0

<
1-h"

Therefore {x }and {y }are Cauchy sequences in X. Since X is complete metric space, there exist X,y e X

d,—>0, as n—> o

such that lim x, = x and hm ny, =y

n—>0

Thus by taking limit » — oo in equation (3.2.2), we get
x=limx, —hmF( 1o Vo 1) Fhm( 1o Vo 1) F(x,y)and

y:hmyn =hmF(yn—1’xn—l):Fllm(yn—l’xn—l):F(y’x)

Therefore x = F(x,y)& y= F(y,x)
Thus F has a coupled fixed point in X.
Theorem 3.3: Let the hypothesis of theorem (3.2) holds. In addition suppose that there exist z € X, which is

comparable tox andy V X, € X then F has a unique fixed point
Suppose that there exist (x*, h% *) and (x', y') € X x X are coupled fixed point of F

Case I: If x* and x'are comparable & ¥*and )'are also comparable and X*# x',y*# ' then by
contractive condition we have

d(x*,x") = d(F(x*, y*), F(x'"))
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< a{d(x*ﬂx*,y*)),d(x',F(x',y'>)d(x*,F(x',y'>)+ d(x*,x')d(x'f(xﬂy*))d(x',F(x':y'))}
N [d(x*,x‘)]2 + d(x*,F(x*,y*))d(x‘,F(x‘,y‘))
+ Bld (¥, F(x*,y%)+d(x', F(x', ")}
d(x*aF(X*’y*))d(x'a F(x'ay')) + 5[d(x*,x')]
d(x*,x')
d(oc*, x *),d(x', x')d (%, x') + d (x*, x')d (x', x *)d (x', x")
(24
[d(x*, x’)]2 + d(x*, X *)d(x’, x')
d (%, x *)d (x', x")
old(x*,x'
o ML fate )
d(x*,x")< 8.d(x*,x')
This is contradiction, since 0 <1 as2a+2f+n+0 <1 .Thus x* = x'.Also
d(y*,y)= d(F(*,x*),F (y',x))
= d(y*,y')S §.d(y*,y')
This is contradiction, since O <1 as2a + 2ﬂ+ 2}/ +n+ O <1 .Thus y* = y'
Therefore (x*, y *) is unique coupled fixed point of F

+

<

}+ﬂw&ﬂxﬂ+ﬂxwﬂ

Case II: If x * is not comparable to x' & ) *is not comparable to ' then by contractive condition there exist w
comparable to X * & x' and there exist vcomparable to }*and )'
Monotonicity implies that w, is comparable to x: =F (x:_l, y:_l)z x* and w, is comparable to
w, . Also monotonicity implies that y: is comparable to v and y: is also comparable to w, .
On the other hand if x: #Ww,x', #w, then by contractive condition we  get
* * *
d(w1 ,X, ): al(F(wl W), F(x, , yn_l))

Case III: If (x*, b% *) is not comparable to (x', y') then there exist (W,v)comparable to (x*, b% *)&(x', y') .
Monotonicity implies that

v F"(y*,x%) [\ F"(y",x")
<d F" (x*, %) ’ F"(w,v) d F"(w,v) ’ F'(x',y' ’
F'(y*,x*) )\ F" (v,w) F'(v,w) J\F"(y',x")
<d(F"(x*, y), F" (w,))+ d(F" (3%, 5, F" (v, w))+ d(F" (w,v), F" (', ) )+ d (F" (v, w), F" (3, x1))

< an{d(x*,F” (x*,y*))d(w, F"(w, v))d(x*,F” (w, v))+ d(x*, w)d(w,F” (x*,y*))d(w, F"(w, v))}

[d(x*, w)]2 + d(x*,F” (w, v))d(w, F"(w, v))
+ p" {d(x*,F" (x*,y*))+ d(w,F" (w, v))}
; a’(x*,F” (x*,y*))+ a’(w,F”(w, v))

a’(x*,w)

+n

+6".d(x*,w)
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,,{d(y*,F”(y*,x*))d(v,F"(v, w))d(y*,F"(v, w))+ d(y*,v)d(v,F"(y*,x*))d(v,F"(v, w))}
[d(y*,v)]2 + d(y*,F" (v, w))d(v, F'(v, w))
+ d (v F (v, %) )+ d (v, F 7 (v,w) )}
Al P ) W B (v, )
d(v*,v)

+a

+n

+ 5”.d(y*,v)
N an{d(w,F”(w, v))d(x',F” (x',y'))d(w,F” (x',y'))+ d(w, x')d(x',F”(w, v))d(x',F”(x‘,y‘))}
[ +dln 7y F )
+ " {a’(w,F”(w,v))+ a’(x',F” (x',y'))}
n d(w,F" (w,v))d(x',F"(x',y'))
d(w,x')

+n
+6".d(w,x')

.\ {dvF o, w))dy F' (o x ))d(v,F"(y',x'))+d(v,y')d(y',F"(nw))d(y',F"(y',x'))}

[a( ) +do P00l P ()
+ Bd(v, Fr v, w))+d(y, F (v x) )
oo A0 el F 0, x)
n
d(v,y)

+6".d(v,)"
a,,{d(x*,x*)d(w, w)d(x*,w)+d(x*,w)d(w,x*)d(w, w)}
[d (x*, w)]2 +d (x*, w)d(w, w)
+p" {d(x*,x *)+ d(w, w)}+ +7" d(x*’;c(?*‘tz)(w’ W) +0" .d(X*,W)
g {d W,y *)d (v, v)d (*,v) + d(v*,v)d (v, y *)d (v, V)}
[ )} +d(*,v)a(v,v)
a0 e )
d(y*,v)
g { d(w,w)d(x', x')d(w, x')+ d(w, x')d (x', w)d(x', x')}
[d (w, x')]2 +d (w, x')d (x' , x')
+ Bd(w,w)+d(x',x')}+7" d(wz;(vv):i(;)"xv) +8".d(w,x")
+an{d(v,V)d(y V), ) +d (v, y)d(y',V)d(y',y')}
(v, )} +d(v,»)d(y,5)
)l e L) 5 )
v,y
< 5"[d(x* )+ d(y v)+ (w x)+ d(v y)]

—0 asn—>owo
Hence F has unique fixed point.
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