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1 Introduction: 

 The fixed point of mapping in ordered metric spaces are of great use in many mathematical problems in 
applied and pure mathematics. The first result in this direction was obtained by Ran and Reuring’s [2]; in this 
study the authors present some applications of their obtained results of matrix equations. In [3], Nieto and Lopez 
extended the result of Ran and Reuring’s [5],for non-decreasing mappings and applied their result to get a unique 
solution for a first order differential equation. While Agrawal et al.[6] and O’Regan and Petrutel [7] studied 
some results for generalized contractions in ordered metric spaces. 
 The notion of coupled fixed point was introduced by Chang and Ma [1]. Since then the concept has 
been of interest to many researchers in metrical fixed point theory. Bhaskar and Lakshmikantham [4] established 
coupled fixed point theorem in metric space endowed with partial order by employing the following 
Contractivity condition: 

 For a mapping XXXF →×: there exist )1,0(∈k  such that  

( ) [ ]vyduxd
k

uuFyxFd ,(),(
2

),(),,( +≤ , for all x,y, u, v in X, vyux ≤≥ &  

Harjani et.al [9]established some fixed point theorem in partially ordered metric spaces by using a contractive 

condition for a rational type i.e. XXF →:  , there exist some ]1,0[, ∈βα with 1<+ βα    such that  

  

( ) ( ) ( )
( )

( )yxd
yxd

FyydFxxd
yxFd ,

,

),,
),( βα +









≤ For all x, y in X and x ≠ y 

L. Ciricet. al.[13] proved coupled fixed point theorem in partially ordered metric spaces by employing 
some notions of Bhaskar and Lakshmikantham [4] as well as rational type contractive condition. Later 
Shatanawi, w [11], Abbas M Khan, AR Nazir T [10] proved coupled fixed point theorem in generalised metric 
space. Jay C. Mehta M. L. Tosh [12] ,RamakantBhardwaj [14]proved coupled fixed point theorem in partially 
ordered metric space. 

 In this paper,we derive new coupled fixed point theorem for mapping having mixed monotone 
property in partially ordered metric space. 
 

2 Preliminaries: 

We recall the definitions and results that will be needed in the sequel. 

Definition 2.1: A partially ordered set is a set P and a binary relation ≤, denoted by ( )≤,X such that for all 

Pcba ∈,,  

i. aa ≤ , (reflexivity) 

ii. cacbba ≤⇒≤≤   and  (transitivity) 

iii. baabba =⇒≤≤   and  ( anti-symmetry) 
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Definition 2.2:A sequence ���� in a metric space (X, d) is said to be Cauchy sequence if lim�→∞ 
��� , �
� =0   ��� ��� �, �>� 
 
Definition 2.3: A metric space (X,d) is said to be complete if every Cauchy sequence in X is convergent. 

Definition 2.4: Let ( )≤,X  be a partially ordered set and XXXF →×: . The mapping F is said to has the 

mixed monotone property if F(x, y) is monotone non- decreasing in x and is monotone non increase in y, that is 

for Xyx ∈,  

  
( ) ( )
( ) ( )212121

212121

,,,,

    ,,,,

yxFyxFyyXyy

andyxFyxFxxXxx

≥⇒≤∈∀

≤⇒≤∈∀
 

Definition 2.5: ( )dX , be a metric space. An element ( ) XXyx ×∈, is said to be a coupled fixed point of the 

mapping ( ) ( ) yxyFxyxFXXXF ==→× , and  ,  if  :  

 

3. Main Result 

Let ( )≤,X be a partially ordered set and d be metric on X such that (X, d) is a complete metric space. 

We also endow the product space XX ×  with the following partial order. 

For all ( ) ( ) ( ) ( ) vyuxyxXXvuyx ≤≥⇔≤×∈ ,, vu,      , ,,,  

Theorem 3.1: Let ( )≤,X be a partially ordered metric set and suppose that there exist a metric d on X such that 

(X; d) is a complete metric space. Let XXXF →×: be a continuous mapping having the mixed monotone 

property such that for some )1,0[,, ∈γβα for all x, y, u, v in X, ux ≠ we have  

( ) ( ) ( )
( )

( ) ( )
( ) 








+≤
uxd

vuFxdyxFud

uxd

vuFudyxFxd
vuFyxFd

,

),(,),(,

,

),(,),(,
),(),,( α  

   
( ){ }
( ) ( ) ( ) ( ){ }),(,),(,),(,),(,

,

vuFudyxFudvuFxdyxFxd

uxd

++++

+

γ
β

 

          … … (3.1.1) 

Where 14 <++ γβα , then F has a coupled fixed point in X. 

Proof: choose XXyx ×∈00 , and set 

( ) ( )001001 ,   , xyFyandyxFx == and in general 

( ) ( )nnnnnn xyFyandyxFx ,   , 11 == ++       (3.1.2) 

With  ( ) 1000 x, =≤ yxFx  (say) and ( ) 1000 , yxyFy =≥  (say)  (3.1.3) 

 By iterative process above 

( ) ( )112112 ,   , xyFyandyxFx ==  

Therefore ( ) ( ) ( ) 211000000
2 ,),(),,(, xyxFxyFyxFFyxF === and    

 ( ) ( ) ( ) 211000000
2 ,),(),,(, yxyFyxFxyFFxyF ===    

Due to the mixed monotone property of F; we obtain 

  
( ) ( ) ( ) 1001100

2
2 ,,, xyxFyxFyxFx =≥==  

( ) ( ) ( ) 1001100
2

2 ,,, yxyFxyFxyFy =≤==  

In general, we have for n ϵ N 

  ( ) ( )),(),,(, 000000
1

1 xyFyxFFyxFx nnn

n == +
+  

  ( ) ( )),(),,(, 000000
1

1 yxFxyFFxyFy nnn

n == +
+  

It is obvious that  

( ) ( ) ..........),(..........,x, 00200
2

1000 ≤=≤≤=≤=≤ n

n xyxFxyxFyxFx  and 

( ) ( ) ...........),(..........,, 00200
2

1000 ≥=≥≥=≥=≥ n

n yxyFyxyFyxyFy  

Thus by mathematical induction principle, we have for nϵ N  
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� ...................x 1210 ≤≤≤≤≤≤ +nn xxxx

................. 1210 ≥≥≥≥≥≥ +nn yyyyy
� ............   (3.1.4) 

Therefore we have by condition (3.1.1) that  

( ) ( )),(),,(, 111 −−+ = nnnnnn yxFyxFdxxd  

( ) ( )
( )

( ) ( )
( ) 








+≤
−

−−−

−

−−−

1

111

1

111

,

),(,),(,

,

),(,),(,

nn

nnnnnn

nn

nnnnnn

xxd

yxFxdyxFxd

xxd

yxFxdyxFxd
α  

( ){ } ( ) ( ) ( ) ( ){ }),(,),(,),(,),(,, 1111111 −−−−−−− +++++ nnnnnnnnnnnnnn yxFxdyxFxdyxFxdyxFxdxxd γβ  

 
( ) ( )

( )
( ) ( )

( ) 







+≤
−

+−

−

−+

1

11

1

11

,

,,

,

,),

nn

nnnn

nn

nnnn

xxd

xxdxxd

xxd

xxdxxd
α

 ( ){ } ( ) ( ) ( ) ( ){ }nnnnnnnnnn xxdxxdxxdxxdxxd ,,,,, 11111 −+−+− +++++ γβ  

 ( ) ( ){ } ( ) ( ) ( ) ( ){ }nnnnnnnnnnnn xxdxxdxxdxxdxxdxxd ,,,,,, 111111 −+−+−+ +++++≤ γβα
 

 
( ) ( ) ( ) ( )11 ,2,2 −+ +++≤ nnnn xxdxxd γβγα  

� ( ) ( )11 ,
21

2
, −+ 








−−

+
≤ nnnn xxdxxd

γα
γβ

      (3.1.5) 

Similarly since nn yy ≥−1  and nn xx ≤−1 , from (3.1.1) we have 

( ) ( )),(),,(, 111 nnnnnn xyFxyFdyyd −−+ =  

( ) ( )
( )

( ) ( )
( ) 








+≤
−

−−−

−

−−−

nn

nnnnnn

nn

nnnnnn

yyd

xyFydxyFyd

yyd

xyFydxyFyd

,

),(,),(,

,

),(,),(,

1

111

1

111α  

( ){ }
( ) ( ) ( ) ( ){ }),(,),(,),(,),(,

,

111111

1

nnnnnnnnnnnn

nn

xyFydxyFydxyFydxyFyd

yyd

++++

+

−−−−−−

−

γ

β
 

( ) ( )
( )

( ) ( )
( ) 








+≤
−

+−

−

+−

nn

nnnn

nn

nnnn

yyd

yydyyd

yyd

yydyyd

,

,,

,

,,

1

11

1

11α  

( ){ } ( ) ( ) ( ) ( ){ }11111 ,,,,, ++−−− +++++ nnnnnnnnnn yydyydyydyydyyd γβ  

( ){ } ( ){ } ( ) ( ) ( ) ( ){ }111111 ,,,,,, ++−−−+ ++++++≤ nnnnnnnnnnnn yydyydyydyydyydyyd γβα  

� ( ) ( )11 ,
21

2
, −+ 








−−

+
≤ nnnn yydyyd

γα
γβ

      (3.1.6) 

Adding (3.1.5) and (3.1.6) we get  

( ) ( ) ( ) ( )

( ) ( )[ ]11

1111

,,
21

2

,
21

2
,

21

2
,,

−−

−−++

+







−−

+
=









−−

+
+








−−

+
≤+

nnnn

nnnnnnnn

yydxxd

yydxxdyydxxd

γα
γβ

γα
γβ

γα
γβ

 

Let us denote 
γα

γβ
21

2

−−
+

=h and ( ) ( )11 ,, ++ + nnnn yydxxd by nd  then 1. −≤ nn dhd  

Similarly it can be proved that 21 . −− ≤ nn dhd  

Therefore 2
2. −≤ nn dhd , by repeating we get 

02
2

1 ............... dhdhhdd n

nnn ≤≤≤≤ −−       (3.1.7) 
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This implies that 0lim =
∞→ n

n
d  

Thus ( ) ( ) 0,lim,lim 11 == +∞→+∞→ nn
n

nn
n

yydxxd  

For each m ≥ n, we obtain by (3.1.7)and the repeated application of triangular inequality that   

( ) ( ) ( ) ( ) ( ) ( )mmnnnnnnnnmn xxdxxdxxdxxdxxdxxd ,........,,,,, 14332211 −+++++++ +++++≤ and 

( ) ( ) ( ) ( ) ( ) ( )mmnnnnnnnnmn yydyydyydyydyydyyd ,........,,,,, 14332211 −+++++++ +++++≤   

Adding these we get  

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]

........

,,

,,

,,

,,,,

4343

3232

2121

11

+

++

++

++

+≤+

++++

++++

++++

++

nnnn

nnnn

nnnn

nnnnmnmn

yydxxd

yydxxd

yydxxd

yydxxdyydxxd

 

( ) ( )[ ]
[ ]

∞→→
−

≤

+++++≤

++
−+++

−−

n  as   ,0
1

...

,,

0

0
1321

11

d
h

h

dhhhhh

yydxxd

n

n

mnnnn

mmmm

 

Therefore { }nx and { }ny are Cauchy sequences in X. Since X is complete metric space, there exist     x, y ϵ X 

such that xxn
n

=
∞→

lim and yyn
n

=
∞→

lim  

Thus by taking limit ∞→n in equation(3.1.2), we get  

( ) ( ) ( )yxFyxFyxFxx nn
n

nn
n

n
n

,,lim,limlim 1111 ==== −−∞→−−∞→∞→
and 

 
( ) ( ) ( )xyFxyFxyFyy nn

n
nn

n
n

n
,,lim,limlim 1111 ==== −−∞→−−∞→∞→

 

Therefore ( )yxFx ,= & ( )xyFy ,=  

Thus F has a coupled fixed point in X. 
 

Theorem 3.2:  Let ( )≤,X be a partially ordered metric set and suppose that there exist a metric d on X such that 

(X; d) is a complete metric space. Let XXXF →×: be a continuous mapping having the mixed monotone 

property on X, such that for some )1,0[,,,, ∈δηβα for all x, y, u, v in X, ux ≠ with 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )[ ] ( ) ( ) 








+

+
≤

),(,),(,,

),(,),(,,),(,),(,),(,
),(),,(

2
vuFudyxFxduxd

vuFudyxFuduxdvuFxdvuFudyxFxd
vuFyxFd α  

   ( ) ( ){ }),(,),(, vuFudyxFxd ++ β   

   

( ) ( )
( )

( ){ }uxd

uxd

vuFudyxFxd

,

,

),(,,),(,

δ

η

+








+
    (3.2.1) 

, 122 <+++ δηβα  then F has a coupled fixed point in X. 

Proof: choose XXyx ×∈00 , and set 

( ) ( )001001 ,   , xyFyandyxFx == and in general 

( ) ( )nnnnnn xyFyandyxFx ,   , 11 == ++       (3.2.2) 

With  ( ) 1000 x, =≤ yxFx  (say) and ( ) 1000 , yxyFy =≥  (say)   (3.2.3) 

 By iterative process above 

( ) ( )112112 ,   , xyFyandyxFx ==  
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Therefore  ( ) ( ) ( ) 211000000
2 ,),(),,(, xyxFxyFyxFFyxF ===  and   

( ) ( ) ( ) 211000000
2 ,),(),,(, yxyFyxFxyFFxyF ===    

Due to the mixed monotone property of F; we obtain 

  
( ) ( ) ( )001100

2
2 ,,, yxFyxFyxFx ≥==  

( ) ( ) ( )001100
2

2 ,,, xyFxyFxyFy ≤==  

In general, we have for n ϵ N 

  ( ) ( )),(),,(, 000000
1

1 xyFyxFFyxFx nnn

n == +
+  

  ( ) ( )),(),,(, 000000
1

1 yxFxyFFxyFy nnn

n == +
+  

It is obvious that  

( ) ( ) ..........),(..........,x, 00200
2

1000 ≤=≤≤=≤=≤ n

n xyxFxyxFyxFx  

and 

( ) ( ) ...........),(..........,, 00200
2

1000 ≥=≥≥=≥=≥ n

n yxyFyxyFyxyFy  

Thus by mathematical induction principle, we have for nϵ N  

� ...................x 1210 ≤≤≤≤≤≤ +nn xxxx

................. 1210 ≥≥≥≥≥≥ +nn yyyyy
� ............   (3.1.4) 

Therefore we have by condition (3.2.1) that  

( ) ( )),(),,(, 111 −−+ = nnnnnn yxFyxFdxxd  

 

( ) ( ) ( )
( ) ( ) ( )
( )[ ] ( ) ( )





















+

+
≤

−−−−−−

−−−−−

−−−−−

),(,),(,,

),(,),(,,

),(,),(,),(,

11111

2

1

11111

11111

nnnnnnnn

nnnnnnnn

nnnnnnnnn

yxFxdyxFxdxxd

yxFxdyxFxdxxd

yxFxdyxFxdyxFxd

α  

 ( ) ( ){ }),(,),(, 111 −−−++ nnnnnn yxFxdyxFxdβ  

 +
( ) ( )

( )
( ){ }1

1

111 ,
,

),(,),(,
−

−

−−− +








nn

nn

nnnnnn xxd
xxd

yxFxdyxFxd
δη  

 
( ) ( ) ( ) ( ) ( ) ( )

( )[ ] ( ) ( ) 











+

+
≤

−−

−+−−−+

nnnnnn

nnnnnnnnnnnn

xxdxxdxxd

xxdxxdxxdxxdxxdxxd

,,,

,,,,,,

1

2

1

111111α  

 ( ) ( ){ }nnnn xxdxxd ,, 11 −+ ++ β  

 +
( ) ( )

( )
( ){ }1

1

11 ,
,

,,
−

−

−+ +








nn

nn

nnnn xxd
xxd

xxdxxd
δη  

 ( ){ } ( ) ( ){ } ( ){ } ( ){ }nnnnnnnnnn yxdxxdxxdxxdxxd ,,,,, 11111 δηβα ++++≤ +−++−  

 ( ) ( )11 ,
)(1

, −+ ++−
++

≤ nnnn xxdxxd
ηβα

δβα
     (3.2.5) 

Similarly since 
nn yy ≥−1

 and
nn xx ≤−1

 , from (3.2.1) we have 

( ) ( )11 ,
)(1

, −+ 







++−

++
≤ nnnn yydyyd

ηβα
δβα

      (3.2.6) 

Adding (3.2.5) and (3.2.6) we get  
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( ) ( ) ( ) ( )

( ) ( )[ ]11

1111

,,
)(1

,
)(1

,
)(1

,,

−−

−−++

+








++−
++

=










++−
++

+








++−
++

≤+

nnnn

nnnnnnnn

yydxxd

yydxxdyydxxd

ηβα
δβα

ηβα
δβα

ηβα
δβα

 

Let us denote 
)(1 ηβα

δβα
++−

++
=h and ( ) ( )11 ,, ++ + nnnn yydxxd by 

nd  then 
1. −≤ nn dhd  

Similarly it can be proved that 
21 . −− ≤ nn dhd  

Therefore 2
2. −≤ nn dhd , by repeating we get 

02
2

1 ............... dhdhhdd n

nnn ≤≤≤≤ −−       (3.2.7) 

This implies that 0lim =
∞→ n

n
d  

Thus ( ) ( ) 0,lim,lim 11 == +∞→+∞→ nn
n

nn
n

yydxxd  

For each m ≥ n, we obtain by (3.2.7)and the repeated application of triangular inequality that   

( ) ( ) ( ) ( ) ( ) ( )mmnnnnnnnnmn xxdxxdxxdxxdxxdxxd ,........,,,,, 14332211 −+++++++ +++++≤ and 

( ) ( ) ( ) ( ) ( ) ( )mmnnnnnnnnmn yydyydyydyydyydyyd ,........,,,,, 14332211 −+++++++ +++++≤   

Adding these we get  

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
[ ]

∞→→
−

≤

+++++≤

++

+

++

++

++

+≤+

−+++

−−

++++

++++

++++

++

n  as   ,0
1

...

,,

........

,,

,,

,,

,,,,

0

0
1321

11

4343

3232

2121

11

d
h

h

dhhhhh

yydxxd

yydxxd

yydxxd

yydxxd

yydxxdyydxxd

n

n

mnnnn

mmmm

nnnn

nnnn

nnnn

nnnnmnmn

 

Therefore { }nx and { }ny are Cauchy sequences in X. Since X is complete metric space, there exist     x, y ϵ X 

such that xxn
n

=
∞→

lim and yyn
n

=
∞→

lim  

Thus by taking limit ∞→n in equation (3.2.2), we get  

( ) ( ) ( )yxFyxFyxFxx nn
n

nn
n

n
n

,,lim,limlim 1111 ==== −−∞→−−∞→∞→
and 

 
( ) ( ) ( )xyFxyFxyFyy nn

n
nn

n
n

n
,,lim,limlim 1111 ==== −−∞→−−∞→∞→

 

Therefore ( )yxFx ,= & ( )xyFy ,=  

Thus F has a coupled fixed point in X. 
Theorem 3.3: Let the hypothesis of theorem (3.2) holds. In addition suppose that there exist z ϵ X, which is 

comparable to x and y Xyx ∈∀ ,   then F has a unique fixed point 

 Suppose that there exist ( )**, yx  and ( ) XXyx ×∈','  are coupled fixed point of F 

Case I: If *x and 'x are comparable & *y and 'y are also comparable and '*,'* yyxx ≠≠ then by 

contractive condition we have  

( ) ( ))''(*),*,('*, yxFyxFdxxd =  



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

369 

( ) ( ) ( ) ( ) ( ) ( )
( )[ ] ( ) ( )

( ) ( ){ })','(,'*)*,(*,

)','(,'*)*,(*,'*,

)','(,'*)*,(,''*,)','(*,)','(,',*)*,(*,
2

yxFxdyxFxd

yxFxdyxFxdxxd

yxFxdyxFxdxxdyxFxdyxFxdyxFxd

++








+

+
≤

β

α

( ) ( )
( )

( )[ ]'*,
'*,

)','(,'*)*,(*,
xxd

xxd

yxFxdyxFxd
δη +









+  

( ) ( ) ( ) ( ) ( ) ( )
( )[ ] ( ) ( )

( ) ( ){ }','**,
','**,'*,

','*,''*,'*,',',**,
2

xxdxxd
xxdxxdxxd

xxdxxdxxdxxdxxdxxd
++









+

+
≤ βα  

( ) ( )
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Hence F has unique fixed point. 
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