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Abstract

In this paper we prove some fixed point theorem in metric space by using altering distance function.
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1 Introduction and preliminaries:
In 1984 M.S. Khan, M Swalech and S. Sessa [10] expanded the research of metric fixed point theory to
a new category by introducing a control function which they called an altering distance function.

Definition 1.1:([10])A functiony/ : R" >R = [0,1) is analtering distance function if the following properties
are satisfied

(%) w(n=01=0

(‘Pz) ¥ is monotonically non - decreasing

(‘P3) y is contineous
By W we denote the set of all altering distance function
Definition 1.2: Let S be a self-mapping of a metric space <M ,d > with a non-empty fixed point F(S), then S is
said to satisfy the property P, F'(S) = F(S") if for eachn e N

The following lemma given by G.Babu and P.P. Sailaja [3] will be used in the sequel in order to prove
our main result.

Lemma 1.3: Let <M ,d > be a metric space, let {xn } be a sequence in M such that
lim[d(x,.x,.,)]= 0
n—>w
If {xn }is not a Cauchy sequence in M then there is a constant €,> 0, and the sequences of positive integers
m(k) and n(k) with m(k) > n(k) > k such that
d(xm(k),xn(k))ZGO and d(xm(k)_l,xn(k) )<eO and
D %152 d(xm(k)—l > X (k)41 ):eo
2) 11_{2 d("m(kwxn(k) )zeo
3) Pglo d(xm(k)—l’xn(k) ):eo .
Remarkl1.4: from lemma (1.3) it easy to get
11_{1; d(xm(k)H’ Xoky+1 )= €0 -

Using these control functions the authors extend the Banach contraction principle by taking ¥ = Id (the
identity mapping), in the inequality of contraction (1.5.1) of the following theorem.
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Theorem 1.5: Let <M,d> be a metric space, let ¥ € ¥ and let S : M — M be a mapping which satisfies the
following inequality
wld(Sx,Sy)|< awld(x, )] (1.5.1)

For all x, y € M, and for some 0 < a < 1 then, S has a unique fixed pointin z, € M and moreover for each x in
M, limS"x =z,.

n—»0
Beside this Jaggi[7] introduced a new contraction mapping and a fixed point through rational expression for self-

mapping which are
o1 1y) < o 1= THOTY)
d(x,y)

for all x, y € X, X # y and for some ae¢[0,1) then, T has a unique fixed point in X.

The above expansion is not valid if x = y this condition is removed by Das and Gupta[5] and proved a fixed
point theorem for self-mapping on taking following expression.

d(re1y)z o B THEAOD, gy )
d(x,y)
for all x, y € X, and for some @, 8 ¢[0,1) ,0 < a + B < 1 then, T has a unique fixed point in X.
Recently J. R. Morales and E M Rojas [16] proved altering distance function and fixed point theorem
through rational expression, Manish Sharma and A.S. Saluja[15] proved fixed point theorem by altering distance
In the paper we prove some fixed point and common fixed point theorems in metric spaces by using
altering distance function.

2 Main Results:
Theorem 2.1:Let <M,d> be a complete metric space. Letyy € V¥ and let S': M — M be a mapping which
satisfies the following condition:
(S5, 59) < av/{d(x’ S0 ) (. ) +d (5. )d (3. 9. $)
[d e, +d (e, Sy)d(v.57)

+ Py ld(x, S0 +d(y,5)]
+yyld(x.8y) +d(y,50)]

d(x,Sx)d(y,Sy)

{ 1+d(x,y) }

+opld(x, )]
For all x, y e M, x #y, and for some a, , y, 1, 8 > 0 with a + 2 + 2y + n + § < 1 then, S has a unique fixed

point in Z, € M and moreover for eachx € M limS"x = z,.

n—>0

@2.1.1)

Proof: Let x € M be an arbitrary point and let {X, | be a sequence defined as follows
x,,, =8x, =8""x ,foreachn >0
Now  yd(x,.x,,)=yld(Sx,,.Sx,)]
< al//{d(xn—l 2 SX, )d(xn ,SX, )d(xn—l 8, )"’ d(xn—l s Xy )d(xn 2SX, )d(xn ,SX, )
[d(xn—l > Xy )]2 + d(xn—l ,8X, )d(xn , S, )
+ By d(x,, 8%, )+ d(x,, S5, )1+ ydd (v, Sx, )+ d(x,, Sx,. )}

d(x,,,8x, )d(x,,Sx,)
n n n n 5 d
+m//{ ey wAd (5,0, )}
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Sal/l{d(xn—l’xn)d(xn’xn-%—l )d(xn 1° n+1)+d( n— 1’ )d(x xn)d(xn’xn-%—l)}

[d(xn 15X )] +d( n-1>% n+1)d( n+1)

+ Pyt (x, pox, )+ dlx,x, )i+ rwid(x,x,)+d (x5, )

d b4 n+
nw{ fid nlfnx J}+5W&Kxnp%3}

ayld(x, .x, )i+ By id(x, 1.x, )+ d(x,.x, )+ i (x, 3, )+ d(x, 5,0, ))
/

+

I/\

X, )+ Spd(x, .3, )}

+nyid(x,,
(1-p-y-nhd(x, x,.)<(a+B+7+5hdl(x,,.x,)
= l//d(xn > xn+l ) S (ijd(xn—l H xn )
1-p-r-n
Therefore
Wd( no n+1 ) < (MJWd(xnl H xn )
1-p-r-n
2
< (Wj wd(x, %)
1-f-y-n
a+ﬂ+y+5T
wd\x,,x
(l—ﬂ—7—n (50:3)
5,2 2T ) 212)
1-p-y-n
. a+pf+y+o o
Since 1— € (O,l)from (2.1.2) we obtain hm 7 [d (xn X, )] =0
—p-r-n
From the fact thatyy € ¥ , we have lim [d( wo X )] 0 (2.1.3)

Now we will show that {xn} is a Cauchy sequence in M. suppose that {xn} is not Cauchy sequence which

means that there is a constant €, such that for each positive integer k, there are positive integers m(k) and n(k)
with m(k) >n(k) > k such that

d(xnz(k)9‘xn(k))260 and d(Xm(k)-U‘xn(k) )<Eo
From lemma (1.3) and Remark (1.4) we obtain

lii?od(xm(k)’xr1(k)):eo (2.1.4)

}(1_1)1;10 d(Xm(k)+1’xn(k)+l)=EO (2.1.5)

For x =X, and y= Yy from (2.1.1) we have
‘//[d(xm(km > X (k)41 )J = '//[d(Sxm(k) > an(k) )J

< al//{d(xm(k) > Sxm(k) )d(xn(k) > an(k) )d(xm(k) > an(k) )+ d(xm(k) ) )d(xn(k)’ Sxm(k) )d(xn(k)’ an(k) )}

h&mwme +d@mw5nm}4nw8n@)
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+ ﬁw[d(xm(k) 38X ) )+ d(xn(k) 5 SX, ) )J+ yt//[d(xm(k) 2 SX, 1) )+ d(xn(k) 58X ) )J

d(xm(k)’Sxm(k))d(xn(k)7sxn(k)) [ ( )]

+ 77‘//{ I+ d(xm(k) ’ xﬂ(k)) + OW A\ 4y X

< a(//{d(xm(k)’xm(k)ﬂ )d(xn(k) > Xyl )d(xm(k)’ Kty )+ d(xm(k), xn(k))d(xn(k) > Xyl )d(xn(k), Xn(kya )}
|_d(xm(k) > Xy )Jz + d(xm(k) > Xyl )d(xn(k) ) xn(km)

+ By ld(xm(k) > (k)41 )+ d(xn(k) > X (k)41 )J+ 7l/jld(xm(k) > X (k)41 )+ d(xn(k) > X (k)41 )J

+ UV/{d(xm(k) >ty )d(xn(k) G )} + 51//[d(xm(k) > X (k) )]

1+ d(xm(k),xn(k))
Using (2.1.3), (2.1.4) and (2.1.5) we obtain

V/(G) = %i_r)gW[d(xm(k)u > X (k)1 )J
< 7]1%2‘//[61(7%(1{) > X k)41 )+ d(xn(k) > Xim(k)e1 )]+ 5W[d(xm(k) > X k) )]

<yyle+el+oyle)
Since € is arbitrary (//(e) < (}/ + 5)W(e)
Since (}/ +0 ) S (0,1), we get a contradiction, then {xn }is a Cauchy sequence in the complete metric space M.

Thus there exist Z, € M such that lim x, = z,

n—>0

Setting X = X, and Y =2z,in(2.1.1) we get
W[d(xnﬂ ,82, )] = ‘//[d(an .82, )]
< al//{d(x” 8%, )d(2,,52 Jd (x, Sz, ) + d(x,, 2 )d (2, Sx, )d (2, Sz, )}
[d(xn,zo )]2 +d(xn=SZo )d(Z()aSZo)

+ ﬁlﬂ[d(xn,an)+d(ZO,SZO)]+]/l//[d(xn,SZO)+ d(ZO’an )]

e S NGt

1+d (xn , ZO)
< al//{d(x" > X i1 )d(zo ,8z, )d(xn ,82 )+ d(xn »Zg )d(zo > X1 )d(zo ,82 )}

[d(xn,zo )]2 + d(xn »82, )d(ZwSZo)

+pyld(x,.x,0 )+ d(z,. 82, )]+ yld(x,.52,)+ d(z,.x, . )]

d\x,,x,, )dz,,S:
n><0
limyld(x,, ,Sz,)] = limy[d(Sx,, Sz, )]
< /B'//[d(ZOsSZo)]+ VV/[d(ZOaSZO)]
<(B+7d(z,,5z,)
}IEI}OW[CZ(X”H’SZO N< (B +yWd(z,,5z,)
= Wd(zoaSZO)S (ﬂ+7)l//d(ZO’SZO)
Since /3,7 € (0,1)then l//[d(ZO,SZO )] = 0, Which implies that d(ZO,SZO)Z 0. Thus z, =8z,
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Now we are going to establish the uniqueness of fixed point theorem. Let ), Z, be two fixed point of S such
that Yy, #Z,, putting X =Y, and Y =2z,in(2.1.1) we get
'//[d(J/O »Z0 )] = ‘//[d(SyOa Sz, )]
< {d(yowsyo)d(zoaSZo)d(yoaSZ0)+d(yoazo)d(ZOaSZO)d(ZoaSZo)}
<ay 5
[ (J’oazo)] +d(y0’SZ0)d(ZO’SZO)
+ﬂ‘// yOaSyO +d(20aSZO)]+7‘//[ (yOaSZO)"'d(ZOaSyo)]

+77w|:d yO)SyO ZO’SZO):|+§(//[d(y0720)]

l+d yo,zo

IN

al//l:d J/O:)’o Zo>Zo)d(J/o=Zo)+ d()’oﬂo )d(ZmJ’O )d(ZmZo ):I

)’oazo)]2 +d()’0=20)d(20520)
+ﬂ‘/’[ (y09y0)+d(zoazo)]+VW[d(yoazo)'i'd(Zano)]

| QM) oyl )

<y +8)5yld(yy.2 )]
Wd(yoazo)S (27/+5)5w[d(y0,20)]
= ‘//[d(yoazo)]zo
= d(y()azo):o

= Yo =2

Remark:In theorem (2.1)if @ = f =y =1 =0andi () =t , we get the result of Banach [1].

Col2.1.a: Let <M ,d > be a complete metric space and let S : M —> M be a mapping which satisfies the

following condition:

d(Sx,Sy) < 0{

d (x,5x)d (v, $9)d (x,8y) + d(x, y)d (v, Sx)d (7, Sy)}
[d(x, )] +d(x,S9)d(y, Sy)
+ Bld(x,$x) +d(y,Sv)]
+y]d(x, Sy) +d(y,S%)]
N n{d(’“’ Sx)d(y, Sy)}
1+d(x,y)

+6ld(x, )]
For all X, y € M, x #y, and for some a, B, y, 1, 8 > 0 with a + 2 + 2y + n + § < 1 then, S has a unique fixed
point in Z, € M and moreover for each x in M. lim S"x = z,,.

n—>0

Proof:It is enough, if we consider /() = ¢ in theorem (2.1)

(2.1.a)

Col 2.1.b: Let <M ,d > be a complete metric space and let S : M —> M be a mapping which satisfies the

following condition:
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d(Sx,Sy) d(x,8%)d (y,Sv)d (x,Sv)+d (x,y)d (y,Sx)d (y,Sy)
J. Syde < [0(en) P 59)d (59) E(r)dt
0
0
d (x,8x)+d (y,Sy)
B[ E(n)dt
d(x,Sy)+d (y,Sx)
+7] E()dr

d(x,8x)d (y.Sy)

o O
(2.1.b)

+8[ e

For all X, y € M, x # y, and for some a, B, y,n, 6 > 0 with a + 28 + 2y +n + § < 1where fiR+ —>R'isa
Lesbesgue-integrable mapping which is summable on compact subset of R, non-negative and such that for

each > O,.[:éf(t)dt >0 then, S has a unique fixed point in Z, € M and moreover for each x € M ,

limS"x =z,.

n—>0

t
Proof:If we take W/ (¢) = .[0 &(t)dt in theorem (2.1), we get our result.

Theorem 2.2:Let <M,d> be a complete metric space. Letly € ¥ and let S': M — M be a mapping which

satisfies the following condition:

wld(Sx,Sy)| < ay max{d(Sx, x),d(Sy, x)}+ By max{d(Sx, y),d(Sy, y )}

+yymax{d(Sx, y),d(Sy,x)}
For all x, y e M, x #y, and for some a, B, v, > 0 with 2a + f + 2y < 1 then, S has a unique fixed point in

(2.2.1)

Z, € M and moreover for eachx in M, limS"x = z,,.
n—»0

Proof:Let X € M be an arbitrary point and let {xn} be a sequence defined as follows

x,, =Sx, =8""x ,foreachn>0

Now  yd (xn 2 Xl ) = ‘//[d (anfl 5%, )]
< oy max{d(Sx, ,,x,, )d(Sx,.x, , )i+ By max{d(Sx, ,.x,).d(Sx,.x, )}
Ty max{d(an—l X ),d(an X n1 )}
<aymaxid(x,.x,, )d(x,,.x, )+ By max{d(x,.x, ). d(x,...x, )}
Ty maX{d(xn Xy )’ d(xn+l 2 X1 )}
< al/ld(‘xnﬂ 2 Xyt )+ IB‘//d(an Xy )+ 7‘//d(xn+1 X1 )

= ‘//d(xn 2 X4l ) = (a—ﬂj‘//d(xn Xy )
I—a-f-7

Therefore
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aty
Wd (xn xn+l ) [ jl//d(xn—l 4 xn )
l-a-p-
< ( aty j )
n -2 > X
l-a-p-
S,
a+
257 V/d Xo> xl
l-a-p-
a+ }/ !
wd(x,,x,,, )< wd (x,,x,) (2.2.2)
l-a-p-y
a+
Since _err € (0,1) from (2.1.2) we obtain lim 1y [d (xn 3 X, )] = 0 mn
l-a-p-y
From the fact thatyy € W , we have lim [d( X, )] 0 (2.2.3)
n—0

Now we will show that {xn} is a Cauchy sequence in M. suppose that {xn} is not Cauchy sequence which

means that there is a constant €, such that for each positive integer k, there are positive integers m(k) and n(k)
with m(k) > n(k) > k such that

d(xnz(k)9‘xn(k))260 and d(Xm(k)-U‘xn(k) )<Eo
From lemma (1.3) and Remark (1.4) we obtain
lim d(x, )%, ) =<, (22.4)

lim d(x .15 %, 601 ) =0 (2.2.5)

For X=X, and y=y,, from(22.1) we have
4 [d (xm(k)+1 > X (k)41 )J =V [d (Sxm(k) X, )J

say max{d(Sxm(k) > X (k) )’ d(an(k)’ KXm(k) )}

+ Py max{d (Sxm(k) s Xn(h) l d (an(k) s Xn(k) )}

v max{d(sxm(k) 2 Xnh) )) d(an(k) > Xk )}

<ay max{d(xm(k)ﬂ > X (k) )’ d(xn(k)+l > Xm(k) )}

+ By max{d(xm(k)ﬂ > Xu() ), d(xn(k)-H > Xk )}

+ry max{d(xm(k)H > Xk )) d(xn(k)H > X (k) )}
Using (2.2.3), (2.2.4) and (2.2.5) we obtain

W(G) = lEE'}Wld(xm(k)+1’ xn(k)+l)
<alim V’[d(xmk)wxm(k) )]+ ﬂ,{g{,}‘/’[d(xmwﬂvxwk) )]"' V,I{EIQW[d(xm(kwxn(k) )]
<ay(e)+ By (e)+yy(e)
<(a+p+ W

Since € is arbitrary l//(e) < (a + [+ ]/)l//(e)

Since (a +pL+y ) € (0,1) , we get a contradiction, and then {xn }is a Cauchy sequence in the complete metric

space M. Thus there exist zZ, € M such that lim X, =z

n—>0

0

Setting X =x, and y =z,in (2.2.1) we get

378



Mathematical Theory and Modeling wWww.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) !'H.i.!
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications “s E

W[d(xnﬂ ,82, )] = ‘//[d(an .82, )]
<ay max{d(an,xn)Jr d(SzO,xn )}+ Pv maX{d(an,zo)+d(Szo,z0 )}
+ max{d (an,ZO)Jr d (Szo,xn )}
< aymax{d(x,..,x,).d(Sz,,x, )} + By maxid(x, .. 2 d(Sz, 2, )}
+ yy max{d(x,... 2 ) d(Sz,, )}
li_I};lOW[d(an 8z, )] = y_lgl//[d(an .8z, )]
< a‘//[d(SZmZo)]"'ﬂW[d(SZmZo)]"' V[d(SZmZo)]
S(“"‘ﬂ"‘?/)’//d(szmzo)
}}B}O wld(x,..820)]< (@ + B+ d(Sz,,2,)
= wd(SzO,ZO)S (a+,8+ ]/)l//d(SZO,ZO)
Since a + f+y € (O,l)then l//[d(ZO,SZO )] =0, Which implies that d(SZO,ZO) =0. Thus z, =S8z, Now

we are going to establish the uniqueness of fixed point theorem. Let ¥, Z, be two fixed point of S such that
Vo £Z,,putting X =Yy, and y =z;in (3.2.1) we get l//[d(yo,zo )] = !//[d(SyO,SZO )]
< ay max{d(Syy, v, ). d(Szy, v, )} + By max{d(Syy, z, ). d(Szy. 2, )}
Y maX{d(Syo, Zy )ad(Szo,yo )}
< a‘//max{d(ymyo )ad(zmyo )}+ Py max{d(ymzo)’d(zo’zo)}
Y maX{d(ymZo )’ d(Zo’yo )}
< a‘//d(zmyo)"'ﬂ‘//d(ymzo)"' 7Wd(20>y0)
= (05+ﬂ+7/)1//d(yo,zo)
= W[d(yoazo)]: 0
= d(y()szo ) =0
= Yo =2
Hence proved

Col2.2.a: Let <M,d> be a complete metric space and let §: M — M be a mapping which satisfies the

following condition:

[d (Sx, Sy)] <a max{d (Sx, x), d (Sy, x)} + [ max{d (Sx, y), d (Sy, y)}

+ 7max{d (Sx, y)d (Sy, X)} (2.2.2)
for all X, y e M, x # y, and for some a, B, y, > 0 with 2a +  + 2y < 1 then, S has a unique fixed point in
Z, € M and moreover for each x in M. lim §"x = z,,.

n—»w

Proof:It is enough, if we consider /() = ¢ in theorem (2.2.1)
Col 2.2.b: Let <M,d> be a complete metric space and let S : M —> M be a mapping which satisfies the

following condition:

J-Od(Sx,Sy)g(t)dt <y J-Omax{d(Sx,x),d(Sy,x)}g(t) di+ Jomax{d(Sx,y),d(Sy,y)} E(t)dt
max{d(Sx,y),d(Sy,x)} 2.2.
[ E(t)dt 220

For all x, y € M, x # y, and for some a, B,y > 0 with 2a + 8 + 2y < 1 where & : R"—>R'isa Lesbesgue-

integrable mapping which is summable on compact subset of R* , non-negative and such that for each

379



Mathematical Theory and Modeling wWww.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) !'H.i.!
Vol.3, No.6, 2013-Selected from International Conference on Recent Trends in Applied Sciences with Engineering Applications “s E

e> O,J.OE.f(t)dt >0 then, S has a unique fixed point in z, € M and moreover for each x € M ,

limS"x=z,.

n—>0

t
Proof:If we take /(¢) = .[0 &(t)dt in theorem (2.2.1), we get our result.
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