$\delta - L$ – Paracompact and $\delta - L_2$ – Paracompact

M. Kareem^{1,a}, H. Hussain^{1,b}

¹Department of Mathematics, College of Education, Alzahraa University, Iraq.

^{a)} Corresponding author:maryam Khenyab @ alzahraa. edu.iq
^{b)} Corresponding author:⁾ <u>huda.ismail@alzahraa.edu.iq</u>

Abstract

In this paper , we shall generalize the definitions and the results of the work[4], from topological spaces to topological vector spaces by using the δ – open sets structures and define another types of δTVS which we will call $\delta - L$ –Paracompact ($\delta - L_2$ –Paracompact) topological vector spaces, A δ –Topological vector space ($\delta TVS V_{(K)}$) is called $\delta - L$ –paracompact if there exist a δ –paracompact space $U_{(K)}$ and a bijective function $f: V_{(K)} \rightarrow U_{(K)}$ such that the restriction $f|_A: A \rightarrow f(A)$ is a homeomorphism for each δ –Lindelöf subspace $A \subseteq V_{(K)}$. A $\delta TVS V_{(K)}$ is called $\delta - L_2$ –paracompact if there exist a $\delta - T_2$ – paracompact space $U_{(K)}$ and a bijective function $f: V_{(K)} \rightarrow U_{(K)}$ is called $\delta - L_2$ –paracompact if there exist a $\delta - T_2$ – paracompact space $U_{(K)}$ and a bijective function $f: V_{(K)} \rightarrow U_{(K)}$ such that the restriction $f|_A: A \rightarrow f(A)$ is a homeomorphism for each δ –Lindelöf subspace $A \subseteq V_{(K)}$. We investigate these two properties.

Keywords: Lindelöf, δ –paracompact, countably normal, $\delta - C$ –paracompact, $\delta - C_2$ –paracompact, $\delta - L$ –paracompact, $\delta - L_2$ –paracompact, $\delta - L$ –normal.

Introduction

The purpose of this paper is to investigate two new properties, $\delta - L$ -paracompactness and $\delta - L_2$ -paracompactness. Some of their aspects are similar to L-normality, and some are distinct. Throughout this paper, we denote an ordered pair by (v, u), the set of positive integers by \mathbb{N} , and the set of real numbers by \mathbb{R} . A $\delta - T_4$ - space is a $\delta - T_1 \delta$ - normal space and a Tychonoff space $(\delta - T_3)$ is a $\delta - T_1$ completely regular space. Int A and \overline{A} denote the interior and the closure of A, respectively. An ordinal Υ is the set of all ordinal α such that $\alpha < \Upsilon$. The first infinite ordinal is w_0 .

1. Definition [9]

A $\delta TVS \mathcal{V}_{(K)}$ is called $\delta - C$ –Paracompact if there exist a δ – Paracompact space $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \to f(A)$ is a homeomorphism for each δ –compact subspace $A \subseteq \mathcal{V}_{(K)}$.

A $\delta TVS \mathcal{V}_{(K)}$ is called $\delta - C_2$ – Paracompact if there exist a $\delta - T_2$ – Paracompact space $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \to f(A)$ is a homeomorphism for each δ –compact subspace $A \subseteq \mathcal{V}_{(K)}$.

We use the idea of Arhangel'skii's, Maryam khenyab and Zahir Dobeas Al-Nafie definition above and give the following definition:

2. Definition

A $\delta TVS \mathcal{V}_{(K)}$ is called $\delta - L$ –Paracompact if there exist a δ –Paracompact space $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \to f(A)$ is a homeomorphism for each δ –Lindelöf subspace $A \subseteq \mathcal{V}_{(K)}$. A $\delta TVS \mathcal{V}_{(K)}$ is called $\delta - L_2$ –Paracompact if there exist a $\delta - T_2$ – paracompact space $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \to f(A)$ is a homeomorphism for each δ –Lindelöf subspace $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \to f(A)$ is a homeomorphism for each δ –Lindelof subspace $A \subseteq \mathcal{V}_{(K)}$.

(Recall that a space X is of countable tightness if for each subset A of X and each $x \in X$ with $x \in \overline{A}$ there exists a countable subset $B \subseteq A$ such that $x \in \overline{B}$.)

3. Theorem

If $\mathcal{V}_{(K)}$ is a $\delta - L$ – paracompact ($\delta - L_2$ – paracompact) and of countable tightness $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ is a witness function of the $\delta - L$ – paracompact ($\delta - L_2$ – paracompact) of $\mathcal{V}_{(K)}$, then f is δ – continuous.

Proof. Let $A \subseteq \mathcal{V}$ be arbitrary. We have $f(\overline{A}) = f(\bigcup_{B \in [A] \le w_0} \overline{B}) = \bigcup_{B \in [A] \le w_0} f(\overline{B}) \subseteq \bigcup_{B \in [A] \le w_0} \overline{f(B)} \subseteq \overline{f(A)}$.

Therefore, f is continuous

(Since any first countable space is Fréchet, any Fréchet space is sequential, and any sequential space is of countable tightness, we conclude that a witness function of the L-paracompactness (L_2 -paracompactness) first countable (Fréchet, sequential) space X is continuous). The following corollary is also clear.

4. Corollary

Any $\delta - L_2$ –paracompact space which is of countable tightness must be at least $\delta - T_2$.

Since any δ -compact space is δ -Lindelöf, then any $\delta - L$ -paracompact space is $\delta - C$ -paracompact and any $\delta - L_2$ -paracompact space is $\delta - C_2$ -paracompact. The converse is not true in general. Obviously, no Lindelöf non-paracompact space is $\delta - L$ -paracompact. So, no uncountable set $\mathcal{V}_{(K)}$ with countable complement topology is $\delta - L$ -paracompact, but it is $\delta - C_2$ -paracompact, hence $\delta - C$ -paracompact, because the only compact subspaces are the finite subspaces, and the countable complement topology is $\delta - T_1$, so compact subspaces are discrete. Hence the discrete topology on $\mathcal{V}_{(K)}$ and the identity function will witness $\delta - C_2$ -paracompactness.

Any δ -paracompact space is $\delta - L$ -paracompact, just by taking $\mathcal{U} = \mathcal{V}$ and the identity function. It is clear from the definitions that any $\delta - L_2$ -paracompact is $\delta - L$ -paracompact. In general, the converse is not true. Assume that \mathcal{V} is δ -Lindelöf and $\delta - L_2$ -paracompact, then the witness function is a homeomorphism which gives that \mathcal{V} is Hausdorff. Thus, any paracompact Lindelöf space which is not Hausdorff is an δ - L -paracompact space that cannot be $\delta - L_2$ -paracompact. In particular, any compact space which is not Hausdorff cannot be $\delta - L_2$ -paracompact. There is a case when the $\delta - L$ -paracompactness implies $\delta - L_2$ -paracompatness given in the next theorem.

5. Theorem

If $\mathcal{V}_{(K)}$ is $\delta - T_3$ –Separable $\delta - L$ –paracompact and countable tightness, then $\mathcal{V}_{(K)}\delta$ –Paracompact $\delta - T_4$.

Proof:

Let $\mathcal{U}_{(K)}$ be a δ -Paracompact space and $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ be a bijective witness to $\delta - L$ -paracompactness of $\mathcal{V}_{(K)}$. Then f is continuous because $\mathcal{V}_{(K)}$ is of countable tightness. Let \mathcal{D} be contable dense subset of $\mathcal{V}_{(K)}$. We show that f is δ -closed. Let \mathcal{H} be any non-empty δ -closed proper subset of $\mathcal{V}_{(K)}$ suppose that $f(p) = q \in \mathcal{U} \setminus f(\mathcal{H})$; then $p \notin \mathcal{H}$. Using regularity, let A and B be disjoint δ -open subset of $\mathcal{V}_{(K)}$ containing p and \mathcal{H} , respectively. Then $A \cap (\mathcal{D} \cup \{p\})$ is δ -open in the δ -Lindelof subspace $\mathcal{D} \cup \{p\}$ containing p, so $f(A \cap (\mathcal{D} \cup \{p\}))$ is δ -open in the subspace $f(\mathcal{D} \cup \{p\})$ of $\mathcal{U}_{(K)}$ containing q. Thus $f(A \cap (\mathcal{D} \cup \{p\})) = f(A) \cap (\mathcal{D} \cup \{p\}) = W \cap f(\mathcal{D} \cup \{p\})$ for some δ -open subset W in $\mathcal{U}_{(K)}$ with $q \in W$. We claim that $W \cap f(\mathcal{H}) = \emptyset$. Suppose otherwise, and take $u \in W \cap f(\mathcal{H})$. Let $v \in \mathcal{H}$ such that f(v) = u. Not that $v \in B$. Since \mathcal{D} is dense in $\mathcal{V}_{(K)}$, \mathcal{D} is also dense in the δ -open set B. Thus $v \in \overline{B \cap \mathcal{D}}$. Now since W is δ -open in $\mathcal{U}_{(K)}$ and f is continuous, $f^{-1}(W)$ is an δ -open set in $\mathcal{V}_{(K)}$; it also contains v. Thus we can choose $d \in f^{-1}(W) \cap B \cap \mathcal{D}$. Thus $W \cap f(\mathcal{H}) = \emptyset$. Not that $q \in W$. As $q \in \mathcal{U} \setminus f(\mathcal{H})$ was arbitrary , $f(\mathcal{H})$ is δ -closed . So f is homeomorphism and $\mathcal{V}_{(K)}$ is δ -paracompact. Since $\mathcal{V}_{(K)}$ is also δ -reparacompact.

6. Theorem

 $\delta - L$ -paracompactness($\delta - L_2$ -paracompactness) is a topological property.

Proof:

Let $\mathcal{V}_{(K)}$ be an $\delta - L$ –Parncompact space and $\mathcal{V}_{(K)} \cong Z_{(K)}$. Let $\mathcal{U}_{(K)}$ be a δ –paracompact space and $f: \mathcal{V}_{(K)} \to \mathcal{U}_{(K)}$ be a bijection such that $f|_{C}: C \to f(C)$ is a homeomorphism for each δ –Lindelöf subspace C of $\mathcal{V}_{(K)}$. Let $g: Z_{(K)} \to \mathcal{V}_{(K)}$ be a homeomorphism Then $f \circ g: Z_{(K)} \to \mathcal{U}_{(K)}$ satisfies all requirements.

7. Theorem

 $\delta - L$ -paracompactness($\delta - L_2$ -paracompactness) is an additive property.

Proof:

Let \mathcal{V}_{δ} be an $\delta - L$ –Paracompact space for each $\delta \in \Lambda$. We show that their sum $\bigoplus_{\delta \in \Lambda} \mathcal{V}_{\delta} \delta$ –Paracompact. For each $\delta \in \Lambda$. pick a δ –Paracompact space \mathcal{U}_{δ} and a bijective function $f_{\delta}: \mathcal{V}_{\delta} \to \mathcal{U}_{\delta}$ such that $f|_{\alpha|_{C_{\alpha}}}: C_{\delta} \to \mathcal{U}_{\delta}$ $f_{\delta}(C_{\delta})$ is a homeomorphism for each δ –Lindelof subspace C_{δ} of \mathcal{V}_{δ} . Since \mathcal{U}_{δ} is δ –Paracompact for each $\delta \in \Lambda$, then the sum $\bigoplus_{\delta \in \Lambda} \mathcal{U}_{\delta}$ cay is δ –Paracompact. Consider the function sum $\bigoplus_{\delta \in \Lambda} f_{\delta} : \bigoplus_{\delta \in \Lambda} \mathcal{V}_{\delta} \to \bigoplus_{\delta \in \Lambda} \mathcal{U}_{\delta}$ defined by $\bigoplus_{\delta \in \Lambda} f_{\delta}(v) = f_{\beta}(v)$ if $v \in \mathcal{V}_{\beta}, \beta \in \Lambda$. Now, a subspace $C \subseteq \bigoplus_{\delta \in \Lambda} \mathcal{V}_{\delta}$ is Lindelöf if and only if the set $\Lambda_0 = \{\delta \in \Lambda : C \cap \mathcal{V}_{\delta} \neq \emptyset$ is countable and $C \cap \mathcal{V}_{\delta}$ is Lindelöf in \mathcal{V}_{δ} , for each $\delta \in \Lambda_0$. If $C \subseteq \bigoplus_{\delta \in \Lambda} \mathcal{V}_{\delta}$, is Lindelöf, then $(\bigoplus_{\delta \in \Lambda} f_{\delta})|_{c}$ is a homeomorphism because $f_{\delta|C \cap \mathcal{V}_{\delta}}$, is a homeomorphism for each $\delta \in \Lambda_0$.

8. Theorem

Every second countable $\delta - L_2$ –Paracompact space is metrizable.

Proof:

If $\mathcal{V}_{(K)}$ is a second countable space, then $\mathcal{V}_{(K)}$ is δ -Lindelöf. If $\mathcal{V}_{(K)}$ is also $\delta - L_2$ -paracompact, then $\mathcal{V}_{(K)}$ will be homeomorphic to a $\delta - T_2$ paracompact space $\mathcal{U}_{(K)}$ and, in particular, $\mathcal{U}_{(K)}$ is $\delta - T_4$. Thus $\mathcal{V}_{(K)}$ is second countable and regular, hence metrizable.

9. Corollary

Every $\delta - T_2$ second countable $\delta - L$ –paracompact space is metrizable.

10. Definition:

A $\delta TVS \mathcal{V}_{(K)}$ is called $\delta - L$ -normal if there exist a δ -normal space $\mathcal{U}_{(K)}$ and a bijective function $f: \mathcal{V}_{(K)} \rightarrow \mathcal{U}_{(K)}$ such that the restriction $f|_A: A \rightarrow f(A)$ is a homeomorphism for each δ -Lindelöf subspace $A \subseteq \mathcal{V}_{(K)}$. Since any $\delta - T_2$ - Paracompact space is δ -normal, it is clear that any $\delta - L_2$ -Paracompact space is $\delta - L$ -normal. In general, $\delta - L$ -Paracompactness does not imply $\delta - L$ -normality. Observe that any finite space which is not discrete is compact, hence Paracompact, thus $\delta - L$ -paracompact. So, any finite space which is not normal will be an example of an $\delta - L$ -paracompact which is neither $\delta - L_2$ -paracompact nor $\delta - L$ -normal. In general, $\delta - L$ -normality does not imply $\delta - L$ -Paracompactness. Here is an example.

11. Example

Let $\mathcal{V} = [0, \infty)$. Define $\mathcal{T} = \{\emptyset, \mathcal{V}\} \cup \{[0, v): v \in \mathbb{R}, 0 < v\}$. Observe that $(\mathcal{V}, \mathcal{T})$ is δ -normal because there are no two non-empty δ -closed disjoint subsets. Thus $(\mathcal{V}, \mathcal{T})$ is $\delta - L$ -normal. Observe that $(\mathcal{V}, \mathcal{T})$ is second countable, hence hereditarily Lindelöf. $(\mathcal{V}, \mathcal{T})$ cannot be δ -Paracompact because \mathcal{T} is coarser than the particular point topology on \mathcal{V} , where the particular point is 0. That's because any non-empty δ -open set contains 0. Therefore, \mathcal{V} is $\delta - L$ -normal but not $\delta - L$ -paracompact.

Conclusions

this study gives a new view of the topology through the vector spaces. This work has many new results that can be summarized in the following facts:

1. If $\mathcal{V}_{(K)}$ is a $\delta - L$ - paracompact ($\delta - L_2$ - paracompact) and of countable tightness $f: \mathcal{V}_{(K)} \rightarrow \mathcal{V}_{(K)}$

 $\mathcal{U}_{(K)}$ is a witness function of the $\delta - L$ – paracompact ($\delta - L_2$ – paracompact) of $\mathcal{V}_{(K)}$, then f is δ – continuous.

2. If $\mathcal{V}_{(K)}$ is $\delta - T_3$ -Separable $\delta - L$ -paracompact and countable tightness, then $\mathcal{V}_{(K)}\delta$ -Paracompact $\delta - T_4$.

3. $\delta - L$ -paracompactness($\delta - L_2$ -paracompactness) is a topological property.

4. $\delta - L$ -paracompactness($\delta - L_2$ -paracompactness) is an additive property.

5. Every second countable $\delta - L_2$ –Paracompact space is metrizable.

6. Every $\delta - T_2$ second countable $\delta - L$ –paracompact space is metrizable.

Reference:

[1] van Douwen, E.K. The Integers and Topology, in: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 111-167, 1984.

[2] Engelking. R. General Topology, PWN, Warszawa, 1977.

[3] Juhász, I., Kunen, K. and Rudin, M.E. Two More Hereditarily Separable non-Lindelöf spaces, Cand. J.

Math., 28. 998-1005, 1976.

[4] Kalantan, M.M. L- Parocompactness and L₂- Paracompactness to appear.

[5] Kalantan, L. and Szeptycki, P. k-normality and products of ordinals. Topology and its Applications, vol

123, 3, 537-545. 2002.

[6] Kalantan, L. Results about k-normality Topology and its Applications 125. 47-62. 2002.

[7] Kalantan, L., Alzumi, H. and Saeed, M.M. C-Parocompactness and C₂-Paracompactness to appear.

[8] Kalantan, L. and Saeed. M. L- Normalitu. Topology Proceedings. 50, 141-119. 2017.

[9] Kareem K. Maryam and AL-Nafie Z.D. δ –C-Parocompactness and δ –C₂-Paracompactness 2021.

[10] Rudin, M.E. A Separable Dowker space, Symposta Mathematica, Instituto Nazionale di Alta Mathematica, 1973.

- [11] Saeed, M.M. Countable Normality, to appear.
- [12] Singal, M.K. and Singal. A.R. Mildly Normal Spaces, Kyungpook Math J. 13, 29-31, 1973.
- [13] Shchepin, E.V. Real Valued Functions and Spaces Close to Normal, Sib. J. Math. 13, 1182-1196, 1972.
- [14] Steen, L. and Seebach, J.A. Counteresamples in Topology. Dover Publications, INC. 1995.
- [15] Weiss, W. Small Docker Spaces, Pacific J. Math. 94. 185-192, 1981.