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Abstract 

Often times fine-tuning the location parameter of original variables or reparameterizing a model in order to make 

the result obtained from such change to have an improved natural interpretation is desirable. Based on the 

regression output such changes are expected to affect either the qualitative and quantitative conclusion. This 

article tends to examine the equivariance to location reparameterization of quantile regression model. The 

analysis was done using real life data set on fuel consumption (in miles per gallon), in highway driving as the 

response variable while car weight, length, wheel base, width, Engine size and horse power are the explanatory 

variables with a sample size of 91. The general Cauchy distribution was used to transform the quantile regression 

model. The results show that mean square errors from the quantile regression model estimates are similar across 

different location parameters of our study model; this therefore shows that quantile regression model has the 

property of equivariance to location reparameterization. 

Keywords: Quantile Regression Model, Cauchit Quantile Regression Model, location Reparameterization and 

Mean Square Error  

 

1. Quantile Regression Model 

A better alternative to conditional-mean modelling has the tendency of measuring the intercept of the median 

regression which obviously happened to be a key theorem about minimizing sum of the absolute deviation and a 

geometrical algorithm for constructing median regression and this was proposed by Ruder Josip Boskovic, a 

Jesuit Catholic Priest from Dubrovnik in 1790.  

The quantile notion however generalizes some terms like the percentile, the decile, the quintile and the quartile. 

As for the
thp quantile, it is used to denote that value of the dependent variable which its proportion is below the 

part of population that is 
p

. Thus, quantiles can specify and understudy any position of a distribution. For 

example, 7.5% of the population lies below the 0.075th quantile. 

Koenker & Bassett (1978) introduced the first order Quantile Regression model which has the form 

        (1.1) 

where  

  is the conditional value of the dependent variable given   in the 
thi  trial,                            

 is the intercept parameter,  

  is the slope parameter, 

 denotes the quantile (e.g., for  the median), 

 is the value of the independent variable in the 
thi  trial, 
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 is the common distribution function of the error ,  

  

These model conditional quantiles are functions of explanatory variables. Therefore, it may not be out of context 

to say that modelling quantile regression is naturally, an extension of the linear-regression model. This is so 

because, the idea of modelling linear-regression is to determine the change(s) in the conditional mean of the 

response variable which inherently is associated with a change in the independent variables, but the idea in 

modelling quantile- regression on the other hand is to determine the changes in the conditional quantile. A lot of 

work has been done in quantile regression these include; Onyegbuchulam et al (2019) evaluated the assumptions 

of the Linear Regression Model on the Quantile Regression Model, Nwakuya et al (2019) carried out response 

variable transformation for Quantile Regression Model, Nwakuya et al (2020) proposed a B.Bounded Logistic 

Quantile Regression as an alternative to Logistic Quantile Regression also  Onyegbuchulam et al (2019), 

considered a choice of appropriate power transformation for skewed distribution of a Quantile Regression model. 

There are some properties of quantile regression model proposed by Koenker (1978), which makes it unique 

among other regression models. Such properties include: equivariance to monotone transformations, 

equivariance to scale parameterization, equivariance to shift parameterization, equivariance to location 

parameterization and, Robustness to Outliers property. The equivariance property of quantile regression model 

enable us to fine turn the parameters of the original variables or reparametrizing a model in order to make the 

result obtained from such change to have an improved natural interpretation. Based on the regression output such 

changes are expected to affect either the qualitative and quantitative conclusions. This is what is meant by 

equivariance to reparameterization. 

Therefore, this research intends to investigate the equivariance to location reparametrization of quantile 

regression model using the quantile function of Cauchy distribution.  

1.1 Cauchy Distribution  

The Cauchy distribution with a common notation as X~cauchy (θ,α) where θ is the location parameter and α > 0 

is the scale parameter is coined after Augustin Cauchy, and it belongs to the family of stable distributions that is 

closed under the formation of sums of independent random variables, its expected value, the variance, skewness 

and kurtosis do not exist but its median is given as θ (Alzaatreh et. al; 2016). Cauchy distribution has been 

applied in various fields like mechanical and electrical theory, physical anthropology, measurement problems, 

risk and financial analysis. Nwabueze et al (2021) applied a Cauchy transformation approach to the robustness of 

quantile regression model to outlier. It was used by Stigler (1989) to derive an explicit expression for P(Z1 < 0, 

Z2 ≤ 0), where (Z1, Z2)) follows the standard bivariate normal distribution, it was also applied to model the points 

of effect of a fixed straight line of particles released from a point source. It is called a Lorenzian distribution in 

physics, where it is defined as the energy of an unstable state distribution in quantum mechanics. Generally, the 

general probability density function (PDF) of the Cauchy distribution is defined as: 

                                     (1.2) 

While the standard probability density function (PDF) of the Cauchy distribution is: 

  (Hao and Norman, 2007)   (1.3) 

Major characteristics of the Cauchy distribution, includes the non-existence of its mean, variance, skewness and 

kurtosis. Norman et al. (2005) also stated that there is no standardized form of the Cauchy distribution, as it is 

not possible to standardize without using (finite) values of mean and standard deviation which do not exist. In 

this case, however, a standard form is obtained by substituting θ = 0, α = 1 which makes it to coincide with the 

student’s t distribution with one degree of freedom.  

Let, , then equation 1.2 becomes;   (1.4) 
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And the CDF becomes,         (1.5) 

while              (1.6) 

If α = 1 and θ = 0 in equation 1.5, it gives us the standard cumulative density function (CDF) of the Cauchy 

distribution, which is; 

 ,             (1.7) 

Let, , then the CDF inverse  function of the general Cauchy distribution becomes: 

                                                 (1.8)  

2.  Cauchit Quatile Regression 

Cauchit quantile regression is from the family of Cauchy distribution. Eugene et al., (2002) introduced the beta – 

generated family of distribution where the authors used the beta distribution as the base line distribution, this was 

followed by Alshawarbeh et al; (2013) who developed the beta – Cauchy distribution which was extended to T - 

R(W) family by Alzaartreh et. al; (2013), where the authors gave the T - R(W) cumulative distribution function 

as: 

 , where r(t) denotes the probability density function of the random variable T with 

support (a,b) for . The authors used the random variable T as the transformer to transform the 

random variable R into a new family of the generalize distribution of R. In this work, Cauchit quantile regression 

is introduced where the quantile function of Cauchy distribution is used as the transformer to transform the 

quantile regression into a new model that can handle ordinal response data and binary response data, as well 

manages outliers in such distribution. The general probability density function of a Cauchy distribution is given 

in equation 1.4, the general CDF is given in equation 1.6 while the CDF inverse  or the Probit function 

of the Cauchy distribution that will be used for data simulation is derived from the CDF of Cauchy distribution in 

equation (1.8). The next step is to equate the CDF inverse  of the Cauchy function of equation (1.8) to the 

quantile regression model of equation (1.1) and solve simultaneously for the Cauchit quantile regression model.  

Since equation (1.1) is true for the quantile regression model, and equation (1.8) is true for the Cauchy quantile 

function, equation (1.8) is therefore equated to equation (1.1) to form a Cauchit quartile regression model.  

                                          (1.9) 

                                    (2.0) 

                               (2.1) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.12, No.2, 2022 

 

28 

  

                                 (2.2) 

   

the response variable and the CDF inverse  of the distribution to be estimated                        

 is the intercept parameter,  

  is the slope parameter, 

 specified quantiles of the model. This research examines the following quantiles: 0.05, 0.25, 0.5, 0.75, 0.95 

 the covariates to be simulated 

Equation (2.2) is the proposed Cauchit quantile regression model that will be used to examine the location 

parameterization of the quantile regression model.  

2.1   Linear Programing Formulation of Cauchit Quantile Regression Problem 

The check function in equation can also be expressed as:  

  

Where,   

And IN is a vector N X 1 all coordinate equal to 1. The residual must satisfy the N constraints that: 

(    

This results in the formulation as a linear program (LP): 

 

As required by the canonical form of linear program, it can be observed that β is still not restricted to be 

positive. This lead into decomposing it into negative and positive parts such as:  

 where  is positive part while  is the negative part. The N 

constraints can then be written as: 

   (2.3) 

Where  and  is a scalar. Then next is to define;  and the design 

matrix X is given by; . To rewrite the constant: 
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             (2.4) 

Define the  matrix as;    

And introducing and as variables over which to minimize so that they are part of Z to obtain: 

 Because and only affect the minimization problem through the constraint, a 0 of 

dimension   must be introduced as part of the coefficient vector C which can then be appropriately define 

as: , thus ensuring that:  

                            (1.2) 

3.0 Data Presentation, Analysis, Results and Discussions  

The experiment was done using real life data borrowed from logistic quantile regression by Efron (1979) on fuel 

consumption for 91 cars measured on six explanatory variable with the design matrix given as , where 

n=91, and  where  is weight of the car,  is length of the car,  is width of the 

car,  is Wheel base of the car,  is Engine size of the car, and  is the car’s horse power, the response 

variable  is miles per gallon of fuel consumed by the car. The size of the sample is 91 but in order to 

estimate the standard error, the confidence interval and the p-values, the real life data were bootstrapped 200 

times following Efron (1979). The data analysis for the experiments was done using the models in equations 

(2.2) 

 Table 3.1: Cauchity Quantile Regression Mean Square Error for Real Life Data n = 91, bootstrapped 200 

times for different values of α and θ 

                                                           

                                 Quantile 0.5 

  -3 -2 -1 0 1 2 3 

0.005 1.1e-09 1.1e-09 1.1e-09 1.1e-09 1.1e-09 1.1e-09 1.1e-09 

0.01 4.5e-09 4.5e-09 4.5e-09 4.5e-09 4.5e-09 4.5e-09 4.5e-09 

0.5 1.1e-05 1.1e-05 1.1e-05 1.1e-05 1.1e-05 1.1e-05 1.1e-05 

1 4.5e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 

2 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 0.00018 

3 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041 

                                    Quantile 0.25 

0.005 8.0e-10 8.0e-10 8.0e-10 8.0e-10 8.0e-10 8.0e-10 8.0e-10 

0.01 3.2e-09 3.2e-09 3.2e-09 3.2e-09 3.2e-09 3.2e-09 3.2e-09 

0.5 8.1 e-06 8.1 e-06 8.1 e-06 8.1 e-06 8.1 e-06 8.1 e-06 8.1 e-06 

1 3.2e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 3.2e-05 

2 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 
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3 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029 0.00029 

                                   Quantile 0.5 

0.005 7.6e-10 7.6e-10 7.6e-10 7.6e-10 7.6e-10 7.6e-10 7.6e-10 

0.01 3.0e-09 3.0e-09 3.0e-09 3.0e-09 3.0e-09 3.0e-09 3.0e-09 

0.5 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 

1 3.0e-05 3.0e-05 3.0e-05 3.0e-05 3.0e-05 3.0e-05 3.0e-05 

2 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 0.00013 

3 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 0.00027 

                                   Quantile 0.75 

0.005 7.2e-10 7.2e-10 7.2e-10 7.2e-10 7.2e-10 7.2e-10 7.2e-10 

0.01 2.9e-09 2.9e-09 2.9e-09 2.9e-09 2.9e-09 2.9e-09 2.9e-09 

0.5 7.2e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 7.6 e-06 

1 2.9e-05 2.9e-05 2.9e-05 2.9e-05 2.9e-05 2.9e-05 2.9e-05 

2 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 

3 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 

                                   Quantile 0.95 

0.005 1.2e-09 1.2e-09 1.2e-09 1.2e-09 1.2e-09 1.2e-09 1.2e-09 

0.01 4.8e-09 4.8e-09 4.8e-09 4.8e-09 4.8e-09 4.8e-09 4.8e-09 

0.5 1.2 e-05 1.2 e-05 1.2 e-05 1.2 e-05 1.2 e-05 1.2 e-05 1.2 e-05 

1 4.8e-05 4.8e-05 4.8e-05 4.8e-05 4.8e-05 4.8e-05 4.8e-05 

2 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 0.00019 

3 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 0.00043 

 

Table 3.3 is the result of Mean Square Error of Cauchity Quantile Regression for the real life data set for 

different values of α and θ. The results show that all the values of the mean square errors are within the range of 

zero and it maintained a significant reduction as the values of α reduces. The value of the Mean Square Error for 

location parameter θ remains equivariance for -3≤ θ ≤3. In quantile 0.95 at α = 3 the Mean Square Error is 

0.00043 for all values of θ, at α = 2 the Mean Square Error is 0.00019 for all values of θ, at α = 1 the Mean 

Square Error is 4.8e-05 for all values of θ. This continues in that order for all quantiles at each α = 0 for all 

values of -3≤ θ ≤3 as can be seen in Table 3.1  
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Table 3.2:  Estimated Parameters for the Cauchit QR Model Computed using the Real Life Data 

Quantiles parameters coefficient Std error T - value Pr(>|t|) 

0.05 intercept 0.01890   0.01875     1.00813   0.31629 

 weight 0.00000   0.00000     0.09876   0.92157 

 Length 0.00006   0.00004     1.63622   0.10554 

 Wheel base -0.00018   0.00015    -1.19987   0.23356 

 width -0.00040   0.00024    -1.66296   0.10005 

 Engine Size 0.00125   0.00068     1.83661   0.06980 

 Horse Power -0.00002   0.00001    -1.39614   0.16635 

0.25 intercept -0.01699    0.00858    -1.98008    0.05097 

 weight -0.00001    0.00000    -4.16024    0.00008 

 Length 0.00008    0.00002     3.21769    0.00184 

 Wheel base 0.00002    0.00007     0.22930    0.81919 

 width 0.00006    0.00009     0.65323    0.51539 

 Engine Size 0.00024    0.00045     0.54877    0.58462 

 Horse Power 0.00000    0.00001    -0.28229    0.77842 

0.5 intercept -0.01548    0.00636    -2.43319    0.01709 

 weight -0.00001    0.00000    -5.37093    0.00000 

 Length 0.00006    0.00003     1.85380    0.04728 

 Wheel base 0.00003    0.00007     0.38048    0.70455 

 width 0.00009    0.00009     1.02585    0.30791 

 Engine Size 0.00013    0.00042     0.31063    0.75685 

 Horse Power 0.00000    0.00001     0.20961    0.83448 

0.75 intercept -0.00517    0.00772    -0.66995    0.50472 

 weight -0.00001    0.00000    -5.77556    0.00000 

 Length 0.00001    0.00004     0.36953    0.01267 

 Wheel base 0.00005    0.00009     0.55679    0.57915 

 width 0.00006    0.00009     0.67536    0.50130 

 Engine Size 0.00062    0.00058     1.07008    0.28765 

 Horse Power 0.00000    0.00001     0.25664    0.79808 

0.95 intercept 0.03252    0.11513     0.28248    0.77827 

 weight -0.00001    0.00001    -0.52314    0.60225 

 Length 0.00014    0.00028     0.49358    0.62289 

 Wheel base -0.00037    0.00099    -0.36906    0.71301 

 width -0.00016    0.00103    -0.15139    0.88003 

 Engine Size 0.00366    0.00424     0.86169    0.39131 

 Horse Power -0.00004    0.00008    -0.51268    0.60952 
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Table 3.3: Descriptive Analysis for the Residuals of the Cauchit Quantile Regression Model Computed 

with Real Life Data 

quantiles Skewness kurtosis mean Median RMSE MSE SD 

0.05 4.58190   26.6010 0.00369 0.00250 0.00671 0.00005 0.00564 

0.25 5.134375   31.4077 0.00167 0.00046 0.00568 0.00004 0.00546 

0.5 5.141661   31.4474   0.00101 0.00000 0.00550 0.00003 0.00544 

0.75 5.009144  30.3745 0.00000 -0.0007 0.00537 0.00003 0.00561 

0.95 3.716878 21.1170 -0.0041 -0.0049 0.00694 0.00005 0.00607 

 

3.1 Conclusion  

The values of the Mean Square Error for location parameter θ in Table 3.1 remain equivariance for -3≤ θ ≤3. In 

quantile 0.95 at α = 3 in table 3.1 the Mean Square Error is 0.00043 for all values of θ, at α = 2 the Mean Square 

Error is 0.00019 for all values of θ, at α = 1 the Mean Square Error is 4.8e-05 for all values of α. This continues 

in that order for all quantiles at each α > 0 for all values of -3≤ θ ≤3. 

We therefore conclude that quantile regression model has the property of equivariance to location 

parametrization. 

 

3.2 Recommendation  

Following our conclusion, we therefore recommend for the researcher to reparameterized quantile regression 

model when necessary. 
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