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Abstract

The Autocorrelation Function (ACF) of a time series process reveals inherent characteristics of the series that may
not be visible from the original series. The ACF of the ARMA(p, q) process has been presented in a few studies
in understandably rigorous and laborious manner with no explicit form of the function. In this study, the approach
of autocovariance generating functions (acvgf) is used to obtain an explicit expression for a series that follows a
linear process under condition of distinct real roots of the AR(p) lag operator polynomial. The technique is used
to derive ACFs of processes as far as ARMA(2, q) for any value of q and subsequently states results for specific
ARMA(3, q) processes. The procedure has shown a clear connection among autocovariances at consecutive lags
of the respective process as well as among consecutive orders of the process at particular lags. The derived ap-
proach which is applied to daily new Covid-19 cases for countries with stationary series obtains the same results of
damp exponential decay in each case as that based on "ARIMAfit" function in R. The results provide useful rela-
tions that may be utilized as diagnostic tests for determining whether a given data follows a specified linear process.

Keywords: Autocovariance generating function, linear process, theoretical autocorrelation

1. Introduction

In the domain of stationary time series modelling, the auto-covariance function (acvf) through its associated auto-

correlation function (ACF) provides an appealing description of the dependent structure existing between adjacent

data points (Carcea and Serfling, 2015; Diebold et al., 2006). ACF is a mathematical representation of the degree

of similarity between a given time series and a lagged version of itself over successive time intervals (Khan et al.,

2021). By definition, the ACF of a time series process with autocovariance γ(k) at lag k is given by

ρ(k) =
γ(k)

γ(0)
(1)

The ACF can either be obtained empirically from the sample data or theoretically from the parameter values based

on the appropriate model that characterizes the series. In practice, the sample ACF relates directly to the classical
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correlation. Literature presents three main approaches on obtaining the theoretical ACF of a time series process: the

Yule-Walker approach, comparison of autoregressive and moving average weights, and the use of auto-covariance

generating function.

The ACF is a vital tool in time series analysis that reveals hidden characteristics of the underlying data (Mestre

et al., 2021; Pardo and Pardo, 2020). In view of this, the literature abounds with the computation of ACF for

certain stationary time series processes. Precisely, ACFs are derived (Box et al., 1970; McLeod et al., 1975; Muth,

1978; Triacca, 2016) for lower orders of stationary ARMA models, and a few have focused on higher orders.

Presentations of higher order ACFs have been complex and particularly challenging to generalize. The work of

McLeod et al. (1975) presents a method for finding the theoretical autocovarince function of an ARMA model.

The derivations helps in obtaining an algorithm suitable for machine computation of the theoretical ACF. Although

the approach has an advantage of computational simplicity, it does not present the exact analytical expressions of

the ACFs. Muth (1978) presents a study on the autocovariance function determined via what is referred to as the

z-transform. The autocovariance function’s bilateral z-transforms are then generated from the transfer function and

inverted after a partial fraction expansion. The results from the approach were used to obtain the autocovariances

of certain ARMA(p, q) process. One major drawback of this method is that for partial fraction of cases where the

degree of the numerator is higher than the degree of the denominator, the autocovariances are quite arduous to

obtain. Specifically, the autocovariances are obtained for ARMA(p, q) processes where 1 ≤ p ≤ 2 and 1 ≤ q ≤ 3,

and no generalizations are made. This article attempts to address these issues by proposing the use of the auto-

covariance generating function (acvgf). The approach is presented for ARMA(p, q), for p = 1, 2, ∀ q, and some

specific processes for p = 3. It will be possible therefore to obtain the ACF for the lower order ARMA processes

when the expression for the general ARMA(p, q) is known. The derived ACF is subsequently used to approximate

the characteristics of relevant pandemic data around some parts of the globe with cases that follow a linear process.

In the next section, we present the underlying methodology for the application of acvgf. Section 3 then pro-

vides the results of the derivations of formulas for the linear processes up to ARMA(3, q). In Section 4, the

results are applied to relevant data. The remaining sections discuss pertinent observations and draw conclusion

and recommendation.

2. Methods

For a stationary time series process {Xt}, the sequence of autocovariances {γ(k)}, for k = 0, 1, · · · can be

calculated through a scalar-valued autocovariance generating function (acvgf) defined as

c(s) =

∞∑
k=−∞

γ(k)sk (2)

2



This implies that the variance of the process, γ(0), is the coefficient of s0 = 1, while γ(k) is the coefficient of sk.

Consider a causal ARMA(p, q) time series process given as

Φ(L)Xt = Θ(L)Zt (3)

where Φ(L) and Θ(L) are linear filters given as

Φ(L) =1− ϕ1L− ϕ2L
2 − · · · − ϕpL

p

Θ(L) =1 + θ1L+ θ2L
2 + · · ·+ θqL

q

and L is the lag operator. Equation (3) can be simplified as

Xt =
Θ(L)

Φ(L)
Zt (4)

which is the Moving Average representation of the process, and may be written as

Xt =

∞∑
r=0

ΨrZt−r (5)

where Ψr are constants and
∑

Ψ2
r < ∞.

The autocovariance at lag k of Equation (5) is obtained as

cov
(
Xt, Xt+k

)
=E
(
Xt ·Xt+k

)
=E
[∑

ΨrZt−r ·
∑

ΨjZt+k−j

]
=σ2

∞∑
r=0

ΨrΨr+k

Inferring from Equation (5), we consider a case where

c(s) =

∞∑
r=0

Ψrs
r (6)

By multiplying Equation (6) by another power series c(s−1), then

c(s) · c(s−1) = cov(Xt, Xt+k)
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Thus, γ(k) is the coefficient of sk in the expansion of the power series given by

c(s)c(s−1) =σ2Θ(s)Θ(s−1)

Φ(s)Φ(s−1)

=σ2

(
θ0 + θ1s+ · · ·+ θps

p
)(

θ0 + θ1s
−1 + · · ·+ θps

−p
)

(
ϕ0 − ϕ1s− · · · − ϕpsp

)(
ϕ0 − ϕ1s−1 − · · · − ϕps−p

) (7)

with θ0 = ϕ0 = 1.

In this study, the underlying assumption is that in Equation (4), the AR(p) lag operator polynomial equation

Φ(L) = 0 has p distinct real roots. Hence Equation (7) may be expressed as

c(s)c(s−1) = σ2

∑q
j=0 θjs

j
∑q

j=0 θjs
−j∏p

i=1(1− αis)(1− αis−1)
(8)

Obtaining an expression for general values of p and q remains the task to be resolved.

3. Results

Based on Equation (8), this section presents explicit expressions for the ACF of various linear processes.

3.1 ACF of ARMA(1, q) Process

For ARMA(1,q) process given as

Xt − ϕXt−1 =

q∑
j=0

θjZt−j (9)

which may be written in terns of lag operator as

(1− ϕL)Xt =

q∑
j=0

θjL
jZt,

the acvgf of the process, following Equation (8) for p = 1, simplifies as

c(s)c(s−1) = σ2
∞∑
r=0

(ϕ1s)
r

∞∑
r=0

(ϕ1s
−1)r

q∑
j=0

θjs
j

q∑
j=0

θjs
−j

= σ2
∞∑
r=0

ϕ2r
[ ∞∑
r=0

(ϕ1s)
r +

∞∑
r=1

(ϕs−1)r
] q∑
j=0

θjs
j

q∑
j=0

θjs
−j

(10)

At lag 0, we consider terms in s0 and obtain the variance of the ARMA(1, q) process as

γ(0) = σ2

{
q∑

j=0

θ2j + 2

q∑
n=1

q−n∑
j=0

ϕnθjθj+n

}
1

1− ϕ2
(11)
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Subsequently, at lag h, for all 1 ≤ h ≤ (q − 1),

γ(h) =σ2

{
h−1∑
n=0

q−(n+1)∑
j=0

ϕh−1−nθjθj+(n+1) +

q∑
n=0

q−n∑
j=0

ϕh+nθjθj+n+

q−h−1∑
n=0

q−(h+n+1)∑
j=0

ϕn+1θjθj+(h+n+1)

}
1

1− ϕ2

(12)

At lag q , we obtain

γ(q) =

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2
(13)

Subsequently, at lag (q + h) , for h ≥ 1 considering terms in sq+h gives

γ(q + h) =ϕh

{
q∑

n=0

q−n∑
j=0

ϕq−nθjθj+n +

q−1∑
n=0

q−(n+1)∑
j=0

ϕq+n+1θjθj+(n+1)

}
1

1− ϕ2

=ϕhγ(q) for h ≥ 1

=ϕk−qγ(q) for k ≥ q + 1

(14)

For example, for ARMA(1,2), following Equations (11) to (14),

ρ(k) =



1 , k = 0

ϕ1(1+θ2
1+θ2

2)+(θ1+θ1θ2)[1+ϕ2
1]+θ2[ϕ

3
1+ϕ1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)

, k = 1

ϕ2
1(1+θ2

1+θ2
2)+(θ1+θ1θ2)[ϕ

3
1+ϕ1]+θ2[1+ϕ4

1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)

, k = 2

ϕk−2ρ(2) , k ≥ 3

(15)

and for ARMA(1,3), it can be deduced that

ρ(k) =



1 , k = 0

ϕ1(1+θ2
1+θ2

2+θ2
3)+(θ1+θ1θ2+θ2θ3)[1+ϕ2

1]+(θ2+θ1θ3)[ϕ
3
1+ϕ1]+θ3[ϕ

4
1+ϕ2

1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 1

ϕ2
1(1+θ2

1+θ2
2+θ2

3)+(θ1+θ1θ2+θ2θ3)[ϕ
3
1+ϕ1]+(θ2+θ1θ3)[1+ϕ4

1]+θ3[ϕ
5
1+ϕ1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 2

ϕ3
1(1+θ2

1+θ2
2+θ2

3)+(θ1+θ1θ2+θ2θ3)[ϕ
4
1+ϕ2

1]+(θ2+θ1θ3)[ϕ
5
1+ϕ1]+θ3[1+ϕ6

1]

1+θ1(θ1+2ϕ1)+θ2(θ2+2ϕ1θ1+2ϕ2
1)+θ3(θ3+2ϕ1θ2+2ϕ2

1θ1+2ϕ3
1)

, k = 3

ϕk−3ρ(3) , k ≥ 4

(16)

Clearly, ρ(k) of lower order ARMA processes such as that in Equation (15) can be derived from Equation (16).

Similarly, for any higher value of q, expressions for ρ(k) may be obtained from Equations (11) to (14).

5



It then follows that a relation for three consecutive ACF of ARMA(1, q) is given by

ρ2(q + 1) = ρ(q)× ρ(q + 2) (17)

3.2 ACF of ARMA(2, q) Process

To obtain the generalized expression for the ARMA(2, q) process, we first consider the ARMA(2,0) process and

point out the main expression that facilitates the generalization.

For the ARMA (2,0) process which is given by

Xt = ϕ1Xt−1 + ϕ2Xt−2 + Zt, (18)

from Equation (8) and the result in Equation (10), the acvgf simplifies as

c(s)c(s−1) =σ2
∞∑
r=0

α2r
∞∑
r=0

β2r

[ ∞∑
r=0

(αs)r +

∞∑
r=1

(αs−1)r

][ ∞∑
r=0

(βs)r +

∞∑
r=1

(βs−1)r

]
(19)

Equation (19) subsequently simplifies as

c(s)c(s−1) = σ2

( ∞∑
r=0

α2r
∞∑
r=0

β2r

)
T (sr) (20)

where T (sr) are expressions in terms of sr. For example, by considering T (s0), the variance γ2,0(0) is obtained

as

γ2,0(0) =σ2
[ ∞∑
r=0

α2r
∞∑
r=0

β2r
]
T (s0)

=
σ2

(1− αβ)
[
(1 + αβ)2 − (α+ β)2

](1 + αβ
)

=
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

](1− ϕ2

)

noting that (α+ β)=ϕ1 and αβ = −ϕ2.

Similarly, γ(1), γ(2) and γ(3) are obtained in terms of γ2,0(0) as

γ(1) =

(
ϕ1

1− ϕ2

)
γ2,0(0), γ(2) =

c1,20
1− ϕ2

γ2,0(0) and γ(3) =
c2,20
1− ϕ2

γ2,0(0)

where c1,20 = ϕ2
1 − ϕ2

2 + ϕ2 and c2,20 = ϕ1c1,20 + ϕ1ϕ2
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For lags greater or equal to 4 and r = k − 1, the generalized autocovariance is given as

γ2,0(k) =
1

1− ϕ2

[(
ϕ2
1 + ϕ2

){
c1,20

∑
r−3≥2s

(
r − 3− s

s

)
ϕr−3−2s
1 ϕs

2+

∑
r−4≥2s

(
r − 4− s

s

)
ϕr−3−2s
1 ϕs+1

2

}
+

c1,20
∑

r−4≥2s

(
r − 4− s

s

)
ϕr−3−2s
1 ϕs+1

2 +

∑
r−5≥2s

(
r − 5− s

s

)
ϕr−3−2s
1 ϕs+2

2

]
γ2,0(0)

(21)

Thus ρ2,0(k), the ACF of the ARMA(2,0), is simply the combinatorial expression coefficient of γ2,0(0).

Generalizing the procedure for ARMA(2, q) process given by

Xt − ϕ1Xt−1 − ϕ2Xt−2 =

q∑
j=0

θjZt−j , (22)

the acvgf of the process, from Equation (8) for p = 2, simplifies as

c(s)c(s−1) = σ2
∞∑
r=0

(αs)r ·
∞∑
r=0

(αs−1)r ·
∞∑
r=0

(βs)r ·
∞∑
r=0

(βs−1)r
q∑

j=0

θjs
j

q∑
j=0

θjs
−j (23)

At lag 0, the variance function is obtained as

γ2,q(0) =

∞∑
r=0

α2r
∞∑
r=0

β2r
∞∑
r=0

(αβ)r

{[
(1 + αβ)

] q∑
j=0

θ2j + 2
[
(α+ β)

] q−1∑
j=0

θjθj+1+

2
[
αβ(1− αβ) + (α2 + β2)

] q−2∑
j=0

θjθj+2 + 2
[
(α2β + αβ2)(1− αβ)+

(α3 + β3)
] q−3∑
j=0

θjθj+3 + · · ·+ 2
[
(αq−2β + αq−3β2 + · · ·+ α2βq−3+

αβq−2)(1− αβ) + (αq−1 + βq−1)
] 1∑
j=0

θjθj+(q−1) + 2
[
(αq−1β+

αq−2β2 + · · ·+ α2βq−2 + αβq−1)(1− αβ) + (αq + βq)
] 0∑
j=0

θjθj+q

}
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The expression then simplifies as

γ2,q(0) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q∑
j=0

θ2j+

2

q∑
n=1

[
(1− αβ)

n−1∑
r=1

αn−rβr + (αn + βn)
] q−n∑

j=0

θjθj+n

} (24)

Subsequently, for 1 ≤ h ≤ q − 1,

γ(h) =
σ2

(1− α2)(1− β2)(1− αβ)

{
(1 + αβ)

q−h∑
j=0

θjθj+h+

h−1∑
n=1

[
(αn + βn) + (1− αβ)

h−2∑
r=1

αh+n−2−rβr
] q−n∑

j=0

θjθj+n+

q∑
n=0

[
(αn+h + βn+h) + (1− αβ)

n∑
r=1

αn+h−rβr
] q−n∑

j=0

θjθj+n+

q−h∑
n=1

[
(αn + βn) + (1− αβ)

n−1∑
r=1

αn−rβr
] q−(n+h)∑

j=0

θjθj+(n+h)

}
,

Similarly, at lag q,

γ(q) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq−n + βq−n)+

(1− αβ)

q−(n+1)∑
r=1

αq−n−rβr
] q−n∑

j=0

θjθj+n + (1 + αβ)θq+

[
(αq+(n+1) + βq+(n+1)) + (1− αβ)

q+n∑
r=1

αq+1+n−rβr
] q−(n+1)∑

j=0

θjθj+n+1

}

and for h ≥ 1,

γ(q + h) =
σ2

(1− α2)(1− β2)(1− αβ)

q−1∑
n=0

{[
(αq+h−n + βq+h−n)+

(1− αβ)

q+h−(n+1)∑
r=1

αq+h−n−rβr
] q+h−(n+1)∑

j=0

θjθj+n+

[
(αq+h(n+1) + βq+h(n+1)) + (1− αβ)

q+h+n∑
r=1

αq+h+n−r−1βr
]

q+h−(n+1)∑
j=0

θjθj+n+1

}

The general expressions are in terms of the roots α and β. Explicit expression for the ACF in terms of the pa-
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rameters of the ARMA(p, q) may be obtained for a specific process, a task which is quite elusive. For the case of

ARMA(1,q) process, however, the task is straightforward.

3.3 Illustration

For example, for ARMA(2,3), the variance may be simplified from Equation (24) as

γ2,3(0) =
σ2

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]{[1− ϕ2

] 3∑
j=0

θ2j +
[
2ϕ1

] 2∑
j=0

θjθj+1+

[
2(ϕ2

1 + ϕ2 − ϕ2
2)
] 1∑
j=0

θjθj+2 + 2θ3

[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2

]} (25)

Equation (25) may be expressed as

γ2,3(0) =
1

(1 + ϕ2)
[
(1− ϕ2)2 − ϕ2

1

]σ2

{
1− ϕ2 + θ1χ+ θ2τ + θ3µ

}

where

χ =2ϕ1 + θ1 − θ1ϕ2

τ =2ϕ1θ1 + 2ϕ2
1 + 2ϕ2 − 2ϕ2

2 + θ2 − θ2ϕ2

µ =2ϕ3
1 + 4ϕ1ϕ2 − 2ϕ1ϕ

2
2 + θ3 − θ3ϕ2 + 2θ2ϕ1 + 2θ1ϕ

2
1 + 2θ1ϕ2 − 2θ1ϕ

2
2

and χ and τ are encountered in γ2,1(0) and γ2,2(0), respectively, of lower order MA processes.

Subsequently, for an ARMA(2,3) process, the general autocovariance function is given as

γ(k) =
cr,23

1− ϕ2 + θ1χ+ θ2τ + θ3µ
γ2,3(0)

=
1

1− ϕ2 + θ1χ+ θ2τ + θ3µ

{
cr,22 + θ3ς

[ ∑
r−4≥2s

(
(r − 4− s)

s

)
ϕr−4−2s
1 ϕs+1

2

]
+

θ3ν

[ ∑
r−3≥2s

(
(r − 3− s)

s

)
ϕr−3−2s
1 ϕs

2

]}
γ2,3(0),

(26)

for r ≥ 5, and r = k − 1
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where

ς =1 + ϕ6
1 + 5ϕ4

1ϕ2 + 6ϕ2
1ϕ

2
2 − ϕ4

1ϕ
2
2 − 3ϕ2

1ϕ
3
2 − ϕ2 + ϕ3

2 − ϕ4
2 + θ3ϕ

3
1 + 2θ3ϕ1ϕ2 − θ3ϕ1ϕ

2
2 + θ2ϕ

4
1+

θ2ϕ
2
1 + 3θ2ϕ

2
1ϕ2 − θ2ϕ

2
1ϕ

2
2 + θ2ϕ2 − θ2ϕ

3
2 + θ1ϕ

5
1 + θ1ϕ1 + 4θ1ϕ

3
1ϕ2 + 3θ1ϕ1ϕ

2
2 − θ1ϕ

3
1ϕ

2
2 − 2θ1ϕ1ϕ

3
2

ν =ϕ5
1 + ϕ3

1 + 4ϕ3
1ϕ2 − ϕ3

1ϕ
2
2 + 2ϕ1ϕ

2
2 + 2ϕ1ϕ2 − 2ϕ1ϕ

3
2 + θ1ϕ

4
1 + 3θ1ϕ

2
1ϕ2 + θ1ϕ

2
2 − θ1ϕ

2
1ϕ

2
2 − θ1ϕ

3
2

Similarly, for ARMA(2,2), γ2,2(0) can be derived from Equation (25) by simply setting θ3 = 0. Subsequently, the

autocovariance is given as

γ(k) =
1

1− ϕ2 + θ1χ+ θ2τ
c(k−1),22γ2,2(0)

=
1

1− ϕ2 + θ1χ+ θ2τ

{
cr,21 + θ2λ

[ ∑
r−3≥2s

(
r − 3− s

s

)
ϕr−3−2s
1 ϕs+1

2

]
+

θ2κ

[ ∑
r−2≥2s

(
(r − 2− s)

s

)
ϕr−2−2s
1 ϕs

2

]}
γ2,2(0),

(27)

for r ≥ 4, noting that r = k − 1

λ =1 + ϕ4
1 + 3ϕ2

1ϕ2 − ϕ2
1ϕ

2
2 − ϕ2 + ϕ2

2 − ϕ3
2 + θ2ϕ

2
1 + θ2ϕ2 − θ2ϕ

2
2 + θ1ϕ

3
1 + θ1ϕ1 + 2θ1ϕ1ϕ2 − θ1ϕ1ϕ

2
2

κ =ϕ5
1 + ϕ1 + 4ϕ3

1ϕ2 + 3ϕ1ϕ
2
2 − ϕ3

1ϕ
2
2 − 2ϕ1ϕ

3
2 + θ2ϕ

3
1 + 2θ2ϕ1ϕ2 − θ2ϕ1ϕ

2
2 + θ1ϕ

4
1 + θ1ϕ

2
1 + 3θ1ϕ

2
1ϕ2−

θ1ϕ
2
1ϕ

2
2 + θ1ϕ2 − θ1ϕ

3
2

3.4 Variance of ARMA(3, q) Process

Generalized acvgf expressions for ARMA(3, q) and much higher order processes can be obtained following the

procedure demonstrated so far. However, they are obviously too lengthy to present for now. Notwithstanding, as

a way to validate aspects of the preceding results, we state expressions for the variances of ARMA(3, q) processes

for 0 ≤ q ≤ 3. Following Equation (8) the variance of an ARMA(3, q), for q = 3 may be given as

γ3,3(0) =
σ2[

1 + ϕ2 + ϕ3(ϕ1 − ϕ2
3)
][
(1− ϕ2)2 − ϕ2

1 − ϕ3(2ϕ1 + ϕ3)
]{[1− ϕ2 − ϕ3(ϕ1 + ϕ3)

] 3∑
j=0

θ2j

+ 2
[
ϕ1 + ϕ2ϕ3

] 2∑
j=0

θjθj+1 + 2
[
ϕ2
1 + ϕ2 − ϕ2

2 + ϕ1ϕ3

] 1∑
j=0

θjθj+2+

2θ3

[
ϕ3
1 + 2ϕ1ϕ2 − ϕ1ϕ

2
2 + ϕ3(1− ϕ2 − ϕ1ϕ3 + ϕ2

1 + ϕ2
2 − ϕ2

3)
]}

By putting relevant parameters to zero, the variance of lower order process, such as Equation (25) can be obtained.
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3.4 Application to Pandemic Data

This section now uses real data to examine the performance of the derived procedure. In order to relate the derived

functions with the literature, the results obtained are compared with existing functions. The data used is obtained

from the official website of the Johns Hopkins University Center for Systems Science Engineering (JHU CSSE),

and covers the Covid-19 cases for Ghana, Nigeria and South Africa for which cases are found to be stationary and

are therefore suitable for the implementations of the results. The data points for all three countries range from

January 2020 to March 2022.

Table 1 is a summary of the selected processes that are observed to characterize the daily new Covid-19 cases in

the selected countries. The theoretical ACFs are obtained from the parameters of the respective models. It can be

seen that all parameter values for the various ARMA processes are statistically significant. The MSE values show

greater variability in the performance of the model for South Africa than the other two countries.

Table 1: Summary of appropriate ARMA models of the daily new Covid-19 cases in selected countries

Country Process Parameter Coeff. SE Coeff. p−value MSE

Ghana ARMA(1,4)

ϕ1 0.9560 0.0137 0.000

76023.67
θ1 -0.9326 0.0380 0.001
θ2 0.0248 0.0520 0.011
θ3 0.0250 0.0539 0.028
θ4 0.1373 0.0358 0.003

Nigeria ARMA(1,2)
ϕ1 0.9798 0.0077 0.000

80449.78θ1 -0.8707 0.0371 0.003
θ2 0.1318 0.0338 0.012

South Africa ARMA(2,2)

ϕ1 1.2075 0.1044 0.034

5068631ϕ2 -0.2210 0.1024 0.014
θ1 -0.5621 0.1020 0.009
θ2 -0.1051 0.0594 0.004

Figures 1, 2, and 3 show the time series plot of the daily cases reported in the three countries, together with their

empirical (sample) ACFs. The data are subjected to the "ARIMAfit" function in R, and the models shown in Table

1 are selected for the respective countries. Based on the models, the ACFs based on the McLeod algorithm in R,

and the theoretical ACFs based on the derived expressions are obtained, along with the empirical ACF. It can be

observed that the sample ACFs show a sinusoidal patterns, an indication that the daily new covid-19 cases in the

three countries demonstrate clear patterns. It can again be observed that the times between successive waves are

not even, showing that the waves are not necessarily periodic. It is evident from the graphs that the autocorrelations

die out at larger lags, an indication that in the distant future, incidence of cases would not be influenced signifi-

cantly by previous cases. The ACFs based on McLeod’s algorithm and that obtained from the derived expressions

are found to be almost the same. The theoretical ACFs show that daily cases attenuates exponentially and that

incidence of cases would eventually die out.
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Figure 1: Time series and ACF plots of daily Covid-19 cases for Ghana

Figure 2: Time series and ACF plots of daily Covid-19 cases for Nigeria
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Figure 3: Time series and ACF plots of daily Covid-19 cases for South Africa

4. Discussion

The derivations have shown that the ACF of an ARMA(p, q) process is predominantly influenced by the Moving

Average order. In particular, for the ARMA(1, q) and ARMA(2, q) processes, it is seen that ACF at lag q, the order

of the MA component, and that beyond lag q are related, and both are unrelated to the ACF preceding lag q. This

supports the reason why the ACFs that precede lag q are determined separately.

The literature (Chen et al., 2011; Eshel, 2003) point out the relationship among the autocovariances and auto-

correlations obtained from the Yule-Walker (Y-W) simplification. The derivations show that the Y-W recursive

formula does not hold for the ACFs at certain lags of some ARMA(2, q) processes, q ≥ 2. For example, for an

ARMA(2,1) process the Y-W recursive formula holds for lag k ≥ 2, which is consistent with the theory. However,

for ARMA(2,2) and (2,3) processes, the Y-W formula holds for lags k ≥ 4 and k ≥ 5, respectively.

The slow decay of the theoretical ACFs in Figures 1, 2 and 3 show that the corona virus cases in Ghana, Nigeria and

South Africa may be expected to continue for a long time, but will eventually die out. Comparatively, it is expected

that daily new Covid-19 cases in Ghana which follows an ARMA(1,4) process with much shorter memory cuts off

faster than that of Nigeria and South Africa. This observation agrees with Montgomery et al. (2015) on the theory.

Although there is a clear difference between the empirical and theoretical ACFs, both diminish over increasing

lags, indicating that incidence of future cases could only be sporadic, and would not follow any discernible pattern.

It is also clear that the theoretical ACF is a limiting function of the empirical ACF.
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5. Conclusion and Recommendation

The study has presented generalized expressions for the ACFs of ARMA(1, q) and ARMA(2, q) processes for all

possible values of q as well as the variances of ARMA(3, q) process for 0 ≤ q ≤ 3 under suitable conditions.

The generalized ACF helps to establish the connection among consecutive lags and orders of the process. Fast

computations are however carried out by iterative implementation of the Y-W equations applied from the appropri-

ately determined lags. The study which is applied to examine the behaviour of the Corona virus pandemic cases in

locations where incidence is stationary shows that the pandemic would eventually die out, though there could be

sporadic cases not informed by previous cases. The results are in line with non-explicit approach in the literature.

It may be relevant to consider ACFs of ARMA(p, q) process under other conditions on the roots of the AR(p) lag

operator polynomial.
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