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Abstract 
This study introduces the Exponentiated-Exponential-Pareto-Half Normal Mixture Distribution (EEPHND), a 

novel hybrid model developed to overcome the limitations of classical distributions in modeling complex real-

world data. By compounding the Exponentiated-Exponential-Pareto (EEP) and Half-Normal distributions 

through a mixture mechanism, EEPHND effectively captures both early-time symmetry and long-tail behavior, 

features which are commonly observed in survival and reliability data. The model offers closed-form expressions 

for its probability density, cumulative distribution, survival and hazard functions, moments, and reliability 

metrics, ensuring analytical tractability and interpretability in the presence of censoring and heterogeneous risk 

dynamics. When applied to a real-world lung cancer dataset, EEPHND outperformed competing models in both 

goodness-of-fit and predictive accuracy, achieving a Concordance Index (CI) of 0.9997. These results highlight 

its potential as a flexible and powerful tool for survival analysis, and biomedical engineering. 

Keywords: Lifetime Distribution, Biomedical Applications 

 

1. Introduction 

Parametric modeling plays a fundamental role in data analysis (Akinsete et al. 2008; Ashour and Eltehiwy 2013; 

Babatunde and Adeleke 2020), particularly in inferential statistics (Chhetri et al. 2017). Crucial to this approach 

is the assumption of an underlying probability distribution (Bourguignon et al. 2016; Ashour and Eltehiwy 2013; 

Eugene et al. 2002). Traditional distributions, such as the exponential, normal, Gamma, and Rayleigh, have been 

widely used for this purpose due to their simplicity and interpretability (Shaw and Buckley 2009). However, the 

complexity of real-world phenomena, resulting from advancements in data acquisition technologies, increasingly 

leads to datasets that exhibit non-standard features (Gnedenko et al. 1999; Burr 1942). These include heavy tails, 

multi-modality, strong asymmetry, and extreme skewness, characteristics that established parametric models are 

often ill-equipped to capture (Akomolafe and Maradesa 2017; Akinsete et al. 2008; Ashour and Eltehiwy 2013). 

As a result, applying these distributions to such data frequently yields poor model fit and unreliable 

inferences (Merovci and Puka 2014; Adeleke et al. 2019; Akomolafe and Maradesa 2019; Chhetri et al. 2017; 

Shittu and Adepoju 2013). To address these limitations, researchers have proposed generalized distributions by 

introducing additional shape or scale parameters to enhance flexibility while maintaining mathematical 

tractability. These include the Exponentiated Exponential distribution (Nadarajah 2011), Exponentiated Weibull 

distribution (Pal et al. 2006), Beta-halfNormal (Akomolafe and Maradesa 2017), Beta-Pareto (Akinsete et al. 

2008), Weighted HalfNormal  (Babatunde and Adeleke 2020), Expnentiatiated Exponential Pareto (Adeleke et 

al. 2019) among others. These extended models offer improved control over statistical properties such as tail 

behavior, skewness, and kurtosis, making them more suitable for modeling complex data (Adeleke 2020). 

Nonetheless, several challenges remain, particularly in survival and lifetime data modeling (Ashour and 

Eltehiwy 2013). While many classical and generalized distributions have been proposed for general-purpose 
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applications, few are explicitly tailored for survival analysis (Chhetri et al. 2017). Effective modeling in this 

context requires the following. 

• A well-defined survival function  

• A flexible hazard rate (e.g., increasing, decreasing, constant, or bathtub-shaped) 

• Interpretability for phenomena such as censoring, early/late failure, or heterogeneous risk dynamics 

Many existing models lack closed-form representations (Arshad et al. 2020), limiting their practical use in 

survival analysis and reducing insight into early, late, or mixed-risk failure patterns (key considerations in 

biomedical research) (Huang 2023; Gnedenko et al. 1999). Moreover, many generalized models struggle to 

capture dual-behavior datasets, such as an early peak followed by a heavy tail, which are common in biological 

measurements and failure time distributions (Tang and Su 2008; Adeleke 2020). These cases require models 

with greater flexibility to represent multiple behavioral patterns within a unified framework (Akomolafe and 

Maradesa 2017; Akomolafe et al. 2019). 

To bridge this gap, we develop the Exponentiated-Exponential-Pareto-Half Normal Mixture Distribution 

(EEPHND), a new hybrid distribution designed explicitly for survival and lifetime data. The EEPHND model 

combines the Exponentiated-Exponential-Pareto Distribution (EEPD) (Adeleke et al. 2019) distribution with the 

Half-Normal distribution via a mixture mechanism (Adeleke 2020), resulting in a flexible yet interpretable 

model. The EEPD component captures long-tail behavior, which are common in late-onset or accumulated risk 

scenarios. On the other hand, the Half-Normal component models symmetric, short-term variations often 

associated with early failures, minimal degradation processes, or measurement-related fluctuations. This dual-

structure design enables the EEPHND to accommodate datasets that exhibit both early-time symmetry and long-

tail heterogeneity, an ability rarely achieved by existing models. Moreover, the model provides a closed-form 

survival function and a tractable hazard rate, supporting meaningful interpretations for censored observations, 

early/late failure dynamics, and mixed-risk populations. 

To evaluate the model’s statistical performance, we applied EEPHND to real-life survival data and benchmarked 

it against EEPD, Log-Normal, and Gamma-Rayleigh. Our model not only achieved one of the best fits in terms 

of AIC, BIC, and CAIC but also outperformed standard models in terms of predictive accuracy, as measured by 

the Concordance Index (CI) (Brentnall and Cuzick 2018). Notably, the EEPHND model produced a CI of 

0.9997, significantly higher than that of the Cox Proportional Hazards model (0.6029), and even marginally 

better than the non-parametric Kaplan-Meier estimator (0.9982). These results highlight the model’s capability in 

both descriptive and predictive modeling of complex survival data. Overall, the proposed EEPHND model fills a 

critical gap in survival and lifetime data modeling by offering a flexible, interpretable, and high-performing 

alternative to existing parametric and semi-parametric models. Its versatility holds promise for a wide range of 

applications in biomedical research (Elbatal et al. 2022), reliability engineering  (Shahriari et al. 2024), 

epidemiology (Hybels and Blazer 2003), and beyond (Adegoke Afeez et al. 2019; Adegoke et al. 2021; A. B. 

Adegoke et al. 2020; Olatunji et al. 2021; A. Adegoke et al. 2020). 

2. Methods 

2.1 Development of EEPHND Model 

The Probability Density Function (PDF) of the EEPHND can be expressed as a mixture of two component 

distributions: 
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where  and  are the parameter vectors of the parent distributions,  and  are the mixing proportions 

satisfying , with . The PDFs of the EEPD (Adeleke et al. 2019) and Half-Normal (HN) 

distributions are given respectively by: 

 

 

To construct the EEPHND as a mixture of the EEP and HN distributions, we substitute equation (1a) and (1b) in 

(1) so that 

 

where , , and . Then, the Cumulative Distribution Function (CDF) of the 

EEPHND is given as 

 

where  is the error function. 

2.2 Derivation of Properties of EEPHND Model 

2.2.1 Moment 

Let  be a random variable following the EEPHND, where , , , and  are the 

shape and scale parameters for the EEPD component, and  is the scale parameter for the HN component. Then, 

 

Let  for the first integral, and  for the second. Applying the respective substitutions and 

simplifications (Adeleke et al. 2019; Adeleke 2020; Babatunde and Adeleke 2020): 
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The variance of the EEPHND is then given by: 

 

2.3 Skewness and Kurtosis 

The coefficient of skewness, , measures the asymmetry of the EEPHND, indicates whether the distribution is 

positively or negatively skewed and provides insight into its asymptotic behavior. The kurtosis, , quantifies the 

heaviness of the distribution’s tails (Adeleke 2020). For the EEPHND,  suggests heavier tails than the 

normal distribution (leptokurtic),  indicates lighter tails (platykurtic), and corresponds to a normal-like 

(mesokurtic) behavior (Adeleke 2020). 

 

Substitute the known raw moments: 
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Let 

 

Then: 

 

 

 

2.4 Fourth Central Moment 

 

Substitute the known raw moments: 

 

Let again: 

 

Thus, the expression simplifies to: 
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2.4.1 Skewness 

 

2.4.2 Kurtosis 

 

 

2.5 Moment Generating Function 

Let . The moment generating function of , denoted by , is defined as (Tallis 

1961; Adeleke et al. 2019): 

 

where  is the probability density function of the EEPHND. Expanding  as a power series and 

interchanging summation and integration provides the following: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.15, No.1, 2025 

 

130 

 

which expresses the moment generating function in terms of the raw moments of the distribution as 

 

2.6 Reliability 

Let . The reliability function, also known as the survival function, is defined as the 

probability that the random variable  exceeds a given value : 

 

2.7 Hazard Function 

Let , the hazard function, also called failure rate function, describes the instantaneous 

rate at which an event occurs, given that it has not occurred before time : 

 

2.8 Odd Function 

Let , then the odds function depicting the ratio of the cumulative probability that the 

event occured at time  to the probability that it has not occurred by time , is given as 
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2.9 Sampling from EEPHND 

Let , defined as a finite mixture of two continuous distributions: the EEP and HN, 

such that 

 

To generate a random variate  from the EEPHND, one may employ the following mixture-based sampling 

strategy: 

• Let . 

• If , draw  from the EEP component via inverse transform sampling: 

o Generate , 

o Then compute: 

 

• Draw , i.e., from the HN distribution with scale parameter . This can be achieved by: 

 

This sampling strategy preserves the probabilistic structure of the EEPHND by ensuring that the generated 

samples reflect its dual nature, i.e., capturing heavy-tailed behavior through the EEP component (Adeleke et al. 

2019) and light-tailed symmetry via the Half-Normal component. This enables EEPHND particularly suitable for 

simulating complex, heterogeneous lifetime and reliability data. Here, the sample size  was selected to achieve 

the desired statistical properties; values of  = 1000 or higher are recommended for simulation studies. Inverse 

transform sampling ensures fidelity to the cumulative distribution of the EEP component, while the Half-Normal 

component is sampled by taking the absolute value of a normally distributed variate. The mixture structure is 

preserved by drawing each sample from the EEP or Half-Normal component with probabilities  and  , 

respectively. 

2.10 Maximum Likelihood Estimation 

Let the observed data be , and define the likelihood function: 
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Taking the natural logarithm, the log-likelihood function becomes: 

 

To estimate the parameters , we take the partial derivatives of the log-likelihood function with respect 

to each parameter and solve the resulting score equations. These equations generally do not have closed-form 

solutions, and numerical methods such as the Newton-Raphson algorithm (Jennrich and Robinson 1969) are 

employed to obtain the maximum likelihood estimates, which were used to test hypotheses regarding parameter 

values, assess the mixture model’s consistency and efficiency compared to its component distributions, and 

construct confidence intervals or perform model selection. 

3. Results 

3.1 Validation with Simulated Data 

Figure 1 shows the effect of varying  on the EEPHND with fixed . As  increases, the PDF 

broadens, the CDF smooths (Figure 2), the hazard flattens, and reliability declines more gradually. panels (e) and 

(f) confirm that EEPHND fits simulated data well and better matches the ECDF than the normal model, 

highlighting its effectiveness for lifetime and reliability modeling. 

The model comparison metrics (AIC, BIC, and CAIC) indicate that the EEPHND model has the lowest values, 

suggesting the best overall fit among the four models evaluated, closely followed by EEP, see Table 1. In 

contrast, the Gamma-Rayleigh and HN models show significantly higher scores, indicating poorer fit. The 

estimated parameters for the EEPHND model include , , , , 

, and mixing probability , and  . The 95% bootstrap confidence intervals for 

these parameters are reasonably tight, demonstrating parameter stability and suggesting that the EEPHND model 

provides a flexible and statistically reliable fit to the data. 
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Comparison of EEPHND characteristics under varying  for fixed . Subplots: (a) PDF, (b) 

CDF, (c) Hazard, (d) Reliability, (e) Fitted PDF vs Data, (f) ECDF comparison. 

 

Comparison of different competing models (a), the CDF and EDCF plot (b) and the Odds function (c) 
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Table 1 

Model comparison metrics and estimated parameters with 95% bootstrap confidence intervals. 

Model Comparison (Lower is Better) AIC BIC CAIC 

EEPHND 599.6024 614.418 599.671 

EEP 600.024 622.247 600.167 

GR 1394.505 1401.913 1394.526 

HN 760.756 764.460 760.763 

Estimated Parameters (MLE) and 95% Bootstrap Confidence Intervals 

Param MLE 95% CI Lower 95% CI Upper  

 1.1932 0.5560 1.8465  

 1.8815 1.6253 2.1415  

 2.4340 1.9677 3.8680  

 1.3058 0.6797 1.5823  

 0.3219 0.0106 1.4331  

 0.9878 0.9261 0.9999  

 

3.2 Validation with Real Data 

3.2.1 Real Data 

The real-life clinical dataset used in this work is the publicly available lung cancer survival dataset from the 

lifelines Python package (Davidson-Pilon 2019). It can be accessed via the load lung() function, which returns a 

structured dataFrame containing time-to-event data, censoring indicators, and covariates such as age, sex, ECOG 

performance score, and weight loss. For reproducibility, all preprocessing steps, such as dropping missing values 

and rescaling the survival time to the range [0,1], were performed using standard Python pandas 

operations (McKinney et al. 2011). The dataset originates from the North Central Cancer Treatment 

Group (Shaw et al. 2002) and is frequently used for benchmarking survival models. 

Table 2 

Comparison of Survival Models: Cox PH, Kaplan-Meier, and EEPHND 

Metric Cox PH Model Kaplan-Meier EEPHND (Parametric) 

Concordance Index (CI) 

CI Score 0.6029 0.9982 0.9997 

Model Parameters 

Covariate: Age coef = 0.0170 — — 

  — — 

 95% CI = [-0.0010, 0.0351] — — 

  = 0.0646 — — 

Covariate: Sex (M=1) coef = -0.5132 — — 

  — — 

 95% CI = [-0.8414, -0.1850] — — 

  = 0.0022 — — 

EEPHND Model Coefficients 

 (shape) — — 0.0001 (unstable) 

 (scale) — — 0.02 

 (exponent) — — 0.01 

 (rate) — — 13.79 
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Metric Cox PH Model Kaplan-Meier EEPHND (Parametric) 

 (Half-Normal scale) — — 0.46 

 (EEP weight) — — 0.01 

Survival Estimate at  

 0.9791 0.9781  

95% CI — [0.9481, 0.9908] — 

Model Type and Flexibility 

Type Semi-parametric Non-parametric Fully parametric (mixture) 

Baseline Hazard Estimated Stepwise constant Closed-form from EEPHND 

Handles Covariates Yes No No (in current form) 

 

3.2.2 Model Comparison 

Table 2 presents a comparative summary of three survival models, namely Cox Proportional Hazards (Cox PH), 

Kaplan-Meier, and the proposed EEPHND, applied to real clinical data. Based on the Concordance Index (CI), 

EEPHND (CI = 0.9997) and Kaplan-Meier (CI = 0.9982) clearly outperform the Cox PH model (CI = 0.6029), 

suggesting superior predictive accuracy. For covariates in the Cox PH model, the effect of age was marginally 

significant (p=0.0646), while sex (male) showed a statistically significant association with poorer survival 

(HR=0.599, p=0.0022). The EEPHND model, despite being fully parametric, does not incorporate covariates in 

its current formulation but produced highly flexible parameter estimates, notably a strong Half-Normal scale 

component ( =0.46) and a very small EEP weight (  = 0.01), see Figure 3. Survival estimates at t=0.012 were 

consistent across all models. Overall, EEPHND offers high accuracy and closed-form flexibility 3, while the Cox 

model adds interpretability through covariate effects. 

Table 3 

Model Comparison using AIC, BIC, and CAIC criteria (lower is better) 

Model AIC BIC CAIC 

EEPHND -123.340 -102.764 -96.764 

Log-Normal -71.642 -64.783 -62.783 

EEP 12.873 26.591 30.591 

Gamma-Rayleigh 497.744 504.603 506.603 
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Fig 3. The density of different candidate models (a), and comparison of survival models (b)  

The EEPHND model captures both early- and late-risk populations through a mixture of EEPD and HN 

components, governed by a flexible mixture parameter  with . Compared to Cox PH and Kaplan-

Meier models, EEPHND provides an explicit parametric form for the baseline survival, allowing direct 

interpretation of shape, scale, and risk mixture in survival dynamics. Notably, the heavy tail behavior (modulated 

by , , and ) makes it well-suited for datasets with heterogeneous risk profiles, unlike Cox PH models which 

rely heavily on covariates 2 for capturing such nuances. 

Overall, the Cox model identifies sex as a significant predictor, with males showing a lower hazard rate than 

females (HR = 0.599, p = 0.0022), highlighting the value of covariate inclusion in detecting clinical risk 

differences. While the EEPHND model currently lacks covariate, it outperforms both Cox and Kaplan-Meier in 

predictive accuracy (CI = 0.9997) and closely matches their early survival estimates. Its fully parametric, closed-

form structure enables continuous survival modeling, making it well-suited for clinical tasks like prognosis 

simulation and population-level planning, particularly when individual covariate data are limited or not 

available. Together, these models offer complementary strengths in risk interpretation and survival forecasting. 
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