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1. Introduction 

 [1] The notion of contra continuity was introduced by J.Dontchev. In 1991, M.Lellis Thivagar [7] 

extended the notion of quotient functions on α -open sets, semi-open and pre-open sets in topological spaces. In 

this paper we introduce and investigate the properties of contra ω̂ -quotient functions, contra ω̂ -closed functions 

and contra ω̂ -open functions, by utilizing ω̂ -closed sets. Also we find some applications of ω̂ - quotient functions. 

 

2.    Preliminaries 

 Throughout this paper a "space" means a topological space which lacks any separation axioms unless 

explicitly stated. For a subset A  of X , )A(lc , )A(nti  and cA  denote the closure of A , the interior of A  and the 

complement of A  respectively.The family of all ω̂ -open (resp. ω̂ -closed) sets of X  is denoted by ).X(Oω̂  (resp.

)X(Cω̂ ) 

Let us recall the following definitions, which are useful in the sequel. 

Definition 2.1  A subset A  of a space X  is called a  

i)  a -open set [3] if )).A(int(cl(intA δ⊂   

ii) ĝα - closed set [4] if U)A(cl ⊆α  whenever UA ⊆  and U  is ĝ -open in ),X( τ .  

iii) ω̂ -closed set [5] if U)A(acl ⊆  whenever UA ⊆  and U  is ĝα -open in ),X( τ .  

Definition 2.2 A function  ),Y(),X(:f σ→τ   is called   

 i)  contra ω̂ -continuous [8] if )V(f 1− is ω̂ -closed subset of ),X( τ  for every open set V  of  ).,Y( σ     

 ii) ω̂ -open (resp. ω̂ -closed) [8] if )V(f  is ω̂ -open( resp. ω̂ -closed) set of ),Y( σ  for every open  

( resp.closed) set V  of  ).,X( τ     

 iii)  Strongly ω̂ -open or *)ˆ(ω -open ( resp. Strongly ω̂ -closed or *)ˆ(ω -closed) [8] if )V(f  is ω̂ -open 

 ( resp. ω̂ -closed) set of  ),Y( σ   for every ω̂ -open ( resp. ω̂ -closed) set V  of  ).,X( τ     

iv)  ω̂ -continuous [8] if )V(f 1−  is ω̂ -open set of  ),X( τ   for every  open set V  of  ).,Y( σ   

 

3.  Contra ω̂ -Closed Functions 

Definition 3.1 A function ),Y(),X(:f σ→τ is said to be contra ω̂ -closed  (resp.contra ω̂ -open) if image of every 

closed  ( resp.open) subset of ),X( τ is ω̂ -open ( resp. ω̂ -closed) subset of ).,Y( σ  

Definition 3.2 A function ),Y(),X(:f σ→τ is said to be strongly contra ω̂ -closed map (resp.strongly contra ω̂ -

open map) if image of every a -closed (resp. a -open) subset of ),X( τ is ω̂ -open (resp. ω̂ -closed) subset of  

).,Y( σ  

Definition 3.3 A function ),Y(),X(:f σ→τ is said to be completely contra ω̂ -closed map (resp.completely contra

ω̂ -open map) if the image of every ω̂ -closed (resp. ω̂ -open) subset of ),X( τ is ω̂ -open (resp. ω̂ -closed) subset 

of ).,Y( σ Also f is said to be ω̂ -irresolute iff inverse image  of every ω̂ -open set is ω̂ -open. (equivalently, 

inverse image of every ω̂ -closed set is ω̂ -closed.) 

Theorem 3.4 Every completely contra ω̂ -closed map (resp.completely contra ω̂ -open map) is strongly contra ω̂ -

closed map.( resp.strongly contra ω̂ -open map)  
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Proof. Let F -be any a -closed (resp. a -open) subset of ).,X( τ  By [5] Proposition 3.2 (i), F is a ω̂ -closed ( resp.

ω̂ -closed) subset of ),X( τ and hence by hypothesis, )F(f is ω̂ -open (resp. ω̂ -closed) subset of  ).,Y( σ  Thus, f is 

strongly contra ω̂ -closed map.( resp.strongly contra ω̂ -open). 

Remark 3.5 Reversible implication is not always true as seen from the following example.  

Example 3.6 Let X = ,Y=}d,c,b,a{  }X},b,a{},a{,{= ∅τ , }Y},d,c,b{},c,b,a{},c,b{,{= ∅σ . Define f as an identity 

function. Then, f is strongly contra ω̂ -closed map but not completely contra ω̂ -closed map as 

}d,c,b{=})d,c,b({f  is not a ω̂ -open subset of ),Y( σ  whereas }d,c,b{ is a ω̂ -closed subset of ).,X( τ    

Remark 3.7 The notion of contra ω̂ -closed map and strongly contra ω̂ -closed map (resp.completely contra ω̂ -

closed map) are independent is understood from the following examples.  

Example 3.8 Let }d,c,b,a{=X  , }X},b,a{},a{,{= ∅τ , }d,c,b,a{=Y }Y},d,c,b{},c,b,a{},c,b{,{= ∅σ . Define  

),Y(),X(:f σ→τ as c=)c(f,b=)b(f,a=)a(f  and .d=)d(f  Then, f is strongly contra ω̂ -closed map, but not 

contra ω̂ -closed map . 

Example3.9 Let }d,c,b,a{=X , }X},b,a{},b{},a{,{= ∅τ , }d,c,b,a{=Y

}Y},d,c,a{},c,b,a{},c,a{},b,a{},c{},a{,{= ∅σ .Define ),Y(),X(:f σ→τ   as b=)c(f,c=)b(f,c=)a(f  and a=)d(f . 

Then, f  is contra ω̂ -closed map, but a strongly contra ω̂ -closed map.    

Example 3.10 Let }d,c,b,a{=X , }X},d,c,b{},c,b,a{},c,b{,{= ∅τ , }d,c,b,a{=Y

}Y},d,c,a{},c,b,a{},c,a}{b,a{},c{},a{,{= ∅σ . 

Define ),Y(),X(:f σ→τ as c=)c(f,c=)b(f,a=)a(f  and .b=)d(f Then f is completely contra ω̂ -closed map, but 

not contra ω̂ -closed map as }b{=})d({f  is not a ω̂ open subset of ),Y( σ whereas }d{  is a closed subset of ).,X( τ  

Remark 3.11 From the  following Examples, it is known that composition of contra ω̂ -closed (resp.strongly 

contra ω̂ -closed, completely contra ω̂ -closed contra ω̂ -closed) mappings is not always contra ω̂ -closed 

(resp.strongly contra ω̂ -closed, completely contra ω̂ -closed contra ω̂ -closed) mapping. 

Example 3.12 Let X = Y = Z = {a,b,c,d} and topologies endowed on them are }X},b,a{},b{},a{,{= ∅τ , 

}Y},a{,{= ∅σ , }Z},d,c,b{},c,b,a{},c,b{,{= ∅η respectively. Define ),Y(),X(:f σ→τ as f(x) = a for all x in X and 

define ),Z(),Y(:g η→σ by g(a) = a, g(b) = b, g(c) = g(d) = c. Then, f and g are contra ω̂ -closed maps. If 

),Z(),X(:fg η→τo  is defined by ( fg o )(x) = g(f(x)) for all x in X, then fg o  is not a contra ω̂ -closed map. 

Example 3.13 Let X = Y = Z = {a,b,c,d}, }X},b,a{},a{,{= ∅τ , }Y},b,a{},b{},a{,{= ∅σ and 

}Z},d,b,a{},c,b,a{},b,a{},b{},a{,{= ∅η . Define ),Y(),X(:f σ→τ as f(x) = a for all x in X and define 

),Z(),Y(:g η→σ by g(a) = c, g(b) = c, g(c) =a, g(d) = b. Then, f and g are strongly contra ω̂ -closed maps 

(resp.completely contra ω̂ -closed). If ),Z(),X(:fg η→τo  is defined by ( fg o )(x) = g(f(x)) for all x in X, then 

fg o  is not a strongly contra ω̂ -closed map (resp.completely contra ω̂ -closed). 

 

Theorems on Compositions. 

Theorem 3.14 If ),Y(),X(:f σ→τ is completely contra ω̂ -closed map and ),Z(),Y(:g η→σ is strongly ω̂ -open 

map, then ),Z(),X(:fg η→τo  is completely contra ω̂ -closed map (resp.strongly contra ω̂ -closed map)  

Proof. Let F  be any ω̂ -closed (resp. a -closed) subset of  ).,X( τ   By [5] Proposition 3.2 (i), every a-closed 

subset is ω̂ -closed subset of  ),X( τ   and since f  is completely contra ω̂ -closed map, f( F ) is ω̂ -open subset of  

).,Y( σ   Since g  is strongly ω̂ -open map, ))F(f(g=)F)(fg( o  is ω̂ -open subset of  ).,Z( η   Thus, fg o  is 

completely contra ω̂ -closed map ( resp.strongly contra ω̂ -closed map )  

Theorem 3.15 If  ),Y(),X(:f σ→τ  is strongly contra ω̂ -closed map and ),Z(),Y(:g η→σ   is strongly ω̂ -open 

map, then ),Z(),X(:fg η→τo  is strongly contra ω̂ -closed map.  

Proof.  Let F -be any a -closed subset of  ).,X( τ Since f  is strongly contra ω̂ -closed map, )F(f  is ω̂ -open 

subset of  ).,Y( σ   Since g  is strongly ω̂ -open map, ))F(f(g=)F)(fg( o  is ω̂ -open in  ).,Z( η   Thus, fg o  is 

strongly contra ω̂ -closed map.  

Theorem 3.16 If ),Y(),X(:f σ→τ is ω̂ -continuous, surjective map and ),Z(),Y(:g η→σ is any map such that 

),Z(),X(:fg η→τo is completely contra ω̂ -closed map, then ),Z(),Y(:g η→σ is contra ω̂ -closed map.  

Proof. Let F  be any closed subset of  ).,Y( σ   Since f  is ω̂ -continuous, )F(f 1−  is ω̂ -closed subset  ),X( τ   and 

since fg o  is completely contra ω̂ -closed, )))F(f(f(g 1−  is ω̂ -open in  ).,Z( η   Since f  is surjective, )F(g  is ω̂ -

open subset of  ).,Z( η   Thus, g  is contra ω̂ -closed map.  

Theorem 3.17 If  ),Y(),X(:f σ→τ   is surjective ω̂ -irresolute map and  ),Z(),Y(:g η→σ   is any map such that  
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),Z(),X(:fg η→τo   is completely contra ω̂ -closed map, then  ),Z(),Y(:g η→σ   is completely contra ω̂ -closed 

map.  

Proof. Let F -be any ω̂  closed subset of  ).,Y( σ   Since f  is ω̂ -irresolute function, )F(f 1−  is ω̂ -closed subset of  

),X( τ   and since fg o  is completely contra ω̂ -closed map, )))F(f(f(g 1−  is ω̂ -open subset of  ).,Z( η   Since f  is 

surjective, )F(g  is ω̂ -open subset of  ).,Z( η   Thus, g  is completely contra ω̂ -closed map.  

Theorem 3.18 If ),Y(),X(:f σ→τ is any function and ),Z(),Y(:g η→σ is an injective, ω̂ -irresolute map such that 

),Z(),X(:fg η→τo   is contra ω̂ -closed map,then ),Y(),X(:f σ→τ is contra ω̂ -closed map.  

Proof. Let F -be any closed subset of  ).,X( τ   Since fg o  is contra ω̂ -closed map, ))F(f(g  is ω̂ -open subset of  

),Z( η   and since g  is injective ω̂ -irresolute function, )F(f=)))F(f(g(g 1−  is ω̂ -open subset of  ).,Y( σ   Thus, f  

is contra ω̂ -closed map.  

Theorem 3.19 If  ),Y(),X(:f σ→τ   is any function and  ),Z(),Y(:g η→σ   is an injective, ω̂ -irresolute map such 

that  ),Z(),X(:fg η→τo   is completely contra ω̂ -closed map,then  ),Y(),X(:f σ→τ   is completely contra ω̂ -

closed map.  

Proof. Let F  be any ω̂ -closed subset of  ).,X( τ   Since fg o  is completely contra ω̂ -closed map, ))F(f(g  is ω̂ -

open subset of  ),Z( η   and since g  is injective, ω̂ -irresolute map, )F(f=)))F(f(g(g 1−  is ω̂ -open subset of  

).,Y( σ   Thus, f  is contra ω̂ -closed map.  

Theorem 3.20 If  ),Y(),X(:f σ→τ   is ω̂ -closed map and  ),Z(),Y(:g η→σ   is completely contra ω̂ -closed map, 

then  ),Z(),X(:fg η→τo   is contra ω̂ -closed map.  

Proof. Let F  be any closed subset of  ).,X( τ   Since f  is ω̂ -closed map, )F(f  is ω̂ -closed subset of  ),Y( σ   and 

since g  is completely contra ω̂ -closed map, ))F(f(g  is ω̂ -open subset of  ).,Z( η   Thus, fg o  is contra ω̂ -closed 

map.  

Theorem 3.21 If  ),Y(),X(:f σ→τ   is strongly ω̂ -closed map and  ),Z(),Y(:g η→σ   is completely contra ω̂ -

closed map, then  ),Z(),X(:fg η→τo   is completely contra ω̂ -closed map.  

Proof. Let F  be any ω̂ -closed subset of  ).,X( τ   Since f  is strongly ω̂ -closed function, )F(f  is ω̂ -closed subset 

of  ),Y( σ   and since g  is completely contra ω̂ -closed map, ))F((f(g  is ω̂ -open in  ).,Z( η   Thus, fg o -is contra 

ω̂ -closed map.   

4   Contra ω̂ -Quotient and Contra ω̂ -irresolute Mappings 

Definition 4.1 A surjective function  ),Y(),X(:f σ→τ   is said to be contra ω̂ -quotient map if f  is contra ω̂ -

continuous and )V(f 1−  is closed subset of  ),X( τ   implies that V  is a ω̂ -open subset of  ).,Y( σ    

Definition 4.2 A surjective function  ),Y(),X(:f σ→τ   is said to be strongly contra ω̂ -quotient map provided a 

set V  is open subset of  ),Y( σ   iff )V(f 1−  is ω̂ -closed subset of  ).,X( τ     

Theorem 4.3 Every strongly contra ω̂ -quotient function is contra ω̂ -continuous map.  

Proof. Let V  be any open subset of  ).,Y( σ   By hypothesis, )V(f 1−  is ω̂ -closed subset of  ).,X( τ   Therefore, f  

is contra ω̂ -continuous map.  

Remark 4.4 Reversible implication is not always true from the following example.  

Example 4.5 Let }d,c,b,a{=X }X},b,a{},b{},a{,{= ∅τ }r,q,p{=Y }Y},q,p{,{= ∅σ . Define ),Y(),X(:f σ→τ as 

p=)c(f,r=)b(f,r=)a(f  and .q=)d(f  Then f  is contra ω̂ -continuous function but not strongly contra ω̂ -

quotient.    

Remark 4.6 The notion of contra ω̂ -quotient and strongly contra ω̂ -quotient are independent is understood 

from the following examples.  

Example 4.7 Let }d,c,b,a{=X  , }X},b,a{},b{},a{,{= ∅τ , }r,q,p{=Y  }Y},q,p{,{= ∅σ . Define  ),Y(),X(:f σ→τ    

as p=)c(f,r=)b(f,r=)a(f  and .q=)d(f  Then f  is contra ω̂ -continuous,surjective and )q,p(f 1−  is the only 

closed subset of  ),X( τ   as well as }q,p{  is ω̂  open in  ).,Y( σ  Therefore it is contra ω̂ -quotient. Further more, 

})p({f 1−  and })q({f 1−  are ω̂ -closed sets in  ),X( τ   but }p{  and }q{  are not open in  ).,Y( σ   Therefore, it is not a 

strongly contra ω̂ -quotient.  

Example 4.8 Let }d,c,b,a{=X  , }X},b,a{},b{},a{,{= ∅τ , }r,q,p{=Y  }Y},q,p{},p{,{= ∅σ . Define  

),Y(),X(:f σ→τ    as p=)c(f,r=)b(f,q=)a(f  and .q=)d(f  Then f  is surjective and strongly contra ω̂ -quotient 

map. Further more, )q,p(f 1−  is the only closed subset of  ),X( τ   and }q,p{  is not a ω̂  open in  ).,Y( σ    
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Therefore, it is not a contra ω̂ -quotient.  

Theorem 4.9 Let  ),Y(),X(:f σ→τ   be any function. Then the following statements are equivalent.   

i) ),Y(),X(:f σ→τ   is contra ω̂ -quotient map.  

ii) If  ),Y(),X(:f σ→τ   is contra ω̂ -continuous and surjective function,then )V(f 1−  is open subset of  ),X( τ   

implies that V  is ω̂ -closed subset of  ).,Y( σ     

Proof. )ii()i( ⇒  Let  ),Y(),X(:f σ→τ   be a surjective and contra ω̂ -continuous map. Suppose that )V(f 1−  is 

any open subset of  ).,X( τ   Then )V\Y(f=)V(f\X 11 −−  is a closed subset of  ),X( τ   By hypothesis, V\Y  is ω̂ -

open subset of  ).,Y( σ   Therefore, V  is ω̂ -closed subset of  ).,Y( σ    

)i()ii( ⇒  Let  ),Y(),X(:f σ→τ   be a surjective and contra ω̂ -continuous map. Suppose that V  is any subset of 

Y  such that )V(f 1−  is closed subset of  ).,X( τ   Then )V\Y(f=)V(f\X 11 −−  is open subset of  ).,X( τ    By 

hypothesis, V\Y  is ω̂ -closed subset of  ).,Y( σ   Therefore, V  is ω̂ -open subset of  ),Y( σ    and hence  

),Y(),X(:f σ→τ   is contra ω̂ -quotient map.  

Theorem 4.10 If  ),Y(),X(:f σ→τ   is a surjective, contra ω̂ -continuous and contra ω̂ -closed map,then f  is 

contra ω̂ -quotient map.  

Proof. Given that f  is a surjective and contra ω̂ -continuous map.It suffices to show that for any subset V  of Y ,

)V(f 1−  is closed subset of  ),X( τ   implies that V  is ω̂ -open subset of  ).,Y( σ   Suppose that V  is any subset of 

Y  such that )V(f 1−  is closed subset of  ).,X( τ    Since f  is contra ω̂ -closed and surjective, ))V(f(f=V 1−  is ω̂ -

open subset of  ),Y( σ   and hence f  is contra ω̂ -quotient map.  

Theorem 4.11 If  ),Y(),X(:f σ→τ   is an injective contra ω̂ -quotient map, then f  is contra ω̂ -closed map.  

Proof. Let V  be any closed subset of  ).,X( τ   Since f  is injective by hypothesis, )))V((f(f=V 1−  is closed 

subset of  ),X( τ   and since f  is contra ω̂ -quotient map, )V(f  is ω̂ -open subset of  ).,Y( σ   Thus, f  is contra ω̂

-closed map.  

Theorem 4.12 Let  ),Y(),X(:f σ→τ   be surjective,closed and ω̂ -irresolute function. If  ),Z(),Y(:g η→σ   is a 

contra ω̂ -quotient map, then  ),Z(),X(:fg η→τo   is a contra ω̂ -quotient map.  

Proof. Let F  be any closed subset of  ).,Z( η   Since g  is contra ω̂ -continuous map, )F(g 1−  is ω̂ -open subset of  

),Y( σ   and since f  is ω̂ -irresolute map, )F)(fg(=))F(g(f 11
o

−−  is ω̂ -open subset of  ).,X( τ   Thus fg o  is a 

contra ω̂ -continuous map. As f  and g  are surjective maps, fg o  is a surjective map. Suppose that V  is any 

subset of  ),Z( η   such that )V()fg( 1−
o  is closed in  ).,X( τ   Since f  is surjective and closed function 

)))V(g(f(f=)V(g 111 −−−  is closed subset of  ),Y( σ   and since g  is contra ω̂ -quotient map, V  is ω̂ -open subset 

of  ).,Z( η   

Theorem 4.13 Assume that any union of ω̂ -open set is ω̂ -open. Let {Aα : α ∈Λ } be a covering of X by both 

pre open and closed subsets of X. If f | Aα is contra ω̂ -quotient map for each α ∈Λ , then  ),Y(),X(:f σ→τ   is 

contra ω̂ -quotient map.  

Proof. Since f | Aα  is surjective,  ),Y(),X(:f σ→τ   is surjective. Since each f | Aα  is contra ω̂ -continuous, f  

is contra ω̂ -continuous map. Suppose that F  is any subset of Y  such that )F(f 1−  is open subset of  ).,X( τ    By 

relative topology, )F()A|f( 1−
α  is open subset of ( , | )A Aα ατ . By hypothesis, F  is ω̂ -closed subset of 

).,X( τ   Thus, ),Y(),X(:f σ→τ   is contra ω̂ -quotient map.  

Definition 4.14  ),Y(),X(:f σ→τ   is said to be contra ω̂ -irresolute function if )V(f 1−  is ω̂ -closed subset of  

),X( τ   for every ω̂ -open set V  of  ).,Y( σ   Equivalently, inverse image of ω̂ -closed subset of  ),Y( σ   is ω̂ -

open subset of  ).,X( τ   

Example 4.15  Let }d,c,b,a{=X }X},b,a{},b{},a{,{= ∅τ }r,q,p{=Y }Y},q,p{,{= ∅σ .Define ),Y(),X(:f σ→τ    

as p=)c(f,r=)b(f,r=)a(f  and .q=)d(f  Then f  is contra ω̂ -irresolute function.  

Theorem 4.16  Suppose that  ),Y(),X(:f σ→τ   is contra ω̂ -irresolute map. Then the following statements hold.   

i)    If  ),Z(),Y(:g η→σ   is contra ω̂ -irresolute map, then  ),Z(),X(:fg η→τo   is ω̂ -irresolute map.  

ii)   If  ),Z(),Y(:g η→σ   is ω̂ -irresolute map, then  ),Z(),X(:fg η→τo   is contra ω̂ -irresolute map.  

iii)  If  ),Z(),Y(:g η→σ   is contra ω̂ -continuous map, then  ),Z(),X(:fg η→τo  is ω̂ -continuous map.  
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Proof.  i) Let V  be any ω̂ -open subset of  ).,Z( η  Since g  is contra ω̂ -irresolute map, )V(g 1−  is ω̂ -closed 

subset of  ),Y( σ   and since f  is contra ω̂ -irresolute map, )V)(fg(=))V(g(f 11
o

−−  is ω̂ -open subset of  ).,X( τ   

Thus, fg o  is ω̂ -irresolute map.  

ii) Let V  be any ω̂ -open subset of  ).,Z( η   Since g  is ω̂ -irresolute map, )V(g 1−  is ω̂ -open subset of  ),Y( σ   

and since f  is contra ω̂ -irresolute map, )V)(fg(=))V(g(f 11
o

−−  is ω̂ -closed subset of  ).,X( τ   Thus, fg o  is 

contra ω̂ -irresolute map.  

iii) Let V  be any open subset of  ).,Z( η Since g  is contra ω̂ -continuous map, )V(g 1−  is ω̂ -closed subset of  

),Y( σ   and since f  is contra ω̂ -irresolute map, )V)(fg(=))V(g(f 11
o

−−  is ω̂ -open subset of  ).,X( τ   Thus fg o  

is ω̂ -continuous map.  

Theorem 4.17 If  ),Y(),X(:f σ→τ   and  ),Z(),Y(:g η→σ   are such that   

i) f  is surjective strongly ω̂ -closed map and  ),Z(),X(:fg η→τo   is contra ω̂ -irresolute map, then g  is contra 

ω̂ -irresolute map  

ii) g  is an injective contra ω̂ -irresolute map and  ),Z(),X(:fg η→τo    is strongly ω̂ -open map, then f  is 

completely contra ω̂ -open map.  

iii) g  is an injective contra ω̂ -irresolute map and  ),Z(),X(:fg η→τo    is completely contra ω̂ -open map, then 

f  is strongly ω̂ -closed map.  

Proof. i) Let V  be any ω̂ -open subset of  ).,Z( η Since fg o  is contra ω̂ -irresolute map, ))V(g(f=)V)(fg( 11 −−
o  

is ω̂ -closed subset of  ).,X( τ  Since f  is surjective and strongly ω̂ -closed map, )))V(g(f(f=)V(g 111 −−−  is ω̂ -

closed subset of  ).,Y( σ   Thus, g  is contra ω̂ -irresolute map.  

ii) Let V  be any ω̂ -open subset of  ).,X( τ   Since fg o  is strongly ω̂ -open map, ))V(f(g=)V)(fg( o  is ω̂ -open 

subset of  ).,Z( η   Since g  is an injective contra ω̂ -irresolute map )))V(f(g(g=)V(f 1−  is ω̂ -closed subset of  

).,Y( σ   Thus, f  is completely contra ω̂ -open map.  

iii) Let V  be any ω̂ -closed subset of  ).,X( τ    Since fg o  is completely contra ω̂ -open map, ))V(f(g=)V)(fg( o  

is ω̂ -open subset of  ).,Z( η   Since g  is an injective contra ω̂ -irresolute map, )))V(f(g(g=)V(f 1−  is ω̂ -closed 

subset of  ).,Y( σ   Thus, f  is strongly ω̂ -closed map.   

 

5. Applications 

Theorem 5.1 If (X, τ ) is a submaximal space, then every ω̂ -open subset of (X, τ ) is open in (X, τ ). 

proof. Suppose that (X, τ ) is a submaximal space and V be any ω̂ -open subset of (X, τ ). By [5] Proposition 3.5, 

every ω̂ -open set is pre-open. By [6] Theorem 4, every pre-open set is open in submaximal space. Therefore, V 

is ω̂ -open subset of (X, τ ). 

Remark 5.2 Converse of Theorem 5.1 is not always true from the following example.  

Example 5.3  Let X = {a, b, c} and τ = { φ , {a}, X}. Then the set of all ω̂ -open subsets of (X, τ ) are  

{ φ , {a}, X}. Therefore, every ω̂ -open subset of (X, τ ) is open in (X, τ ) which is not a submaximal space. 

Lemma 5.4  In a semi regular space (X, τ ), every open subset of (X, τ ) is ω̂ -open subset of (X, τ ). 

proof.  By [2], every open subset is δ-open subset of (X, τ ) and by [5] Proposition 3.2, every δ-open subset is ω̂

-open subset of (X, τ ). Therefore, every open subset of (X, τ ) is ω̂ -open subset of (X, τ ). 

Remark 5.5  Converse of Lemma 5.4, is not always possible from the Example 5.3. 

Theorem 5.6 If  ),X( τ   is submaximal then every contra ω̂  closed map is completely contra ω̂  closed 

(resp.strongly contra ω̂  closed) map.  

Proof.  Let F  be any ω̂  ( resp. a )-closed subset of a submaximal space  ).,X( τ   By Theorem 5.1, F  is closed 

subset of  ),X( τ   and since f  is contra ω̂  closed map, then )F(f  is ω̂  open subset of  ).,Y( σ   Therefore, f  is 

completely contra ω̂  closed ( resp.strongly contra ω̂  closed) map.  

Theorem 5.7 Every strongly contra ω̂ -quotient map is contra ω̂ -quotient map, provided that both domain and 

co-domain are semi-regular.  

Proof. Let  ),Y(),X(:f σ→τ   be a strongly contra ω̂ -quotient map and V  be any open subset of  ).,Y( σ   By 

hypothesis, )V(f 1−  is ω̂ -closed subset of  ).,X( τ   Therefore, f  is contra ω̂ -continuous map. Suppose that F  is 

any subset of Y  such that )F(f 1−  is closed subset of  ).,X( τ Since X  is semi-regular, by Lemma 5.4, )F(f 1−  is 
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ω̂ -closed subset of  ).,X( τ   Since f  is strongly contra ω̂ -quotient map, F  is open in the semi-regular space  

),Y( σ   and by Lemma 5.4, V  is ω̂ -open subset of  ).,Y( σ     

Theorem 5.8 Every contra ω̂ -quotient is strongly contra ω̂ -quotient map, provided that both domain and co-

domain are submaximal.  

Proof. Let  ),Y(),X(:f σ→τ   be a contra ω̂ -quotient map and V  be any open subset of  ).,Y( σ   By hypothesis,

)V(f 1−  is ω̂ -closed subset of  ).,X( τ   Suppose that F  is any subset of Y  such that )F(f 1−  is ω̂ -closed subset of  

).,X( τ   Since X  is submaximal, by Theorem 5.1, )F(f 1−  is closed subset of  ).,X( τ  By hypothesis, F is ω̂

-open subset of the submaximal space  ),Y( σ   and by Theorem 5.1,  F is open subset of  ).,Y( σ     

Theorem 5.9 Let  ),Y( σ   be a submaximal space. If  ),Y(),X(:f σ→τ   is surjective,contra ω̂ -continuous and 

completely contra ω̂ -closed map, then f  is strongly contra ω̂ -quotient map.  

Proof.  Let V  be any open subset of  ).,Y( σ   Since f  is contra ω̂ -continuous map, )V(f 1−  is ω̂ -closed subset 

of  ).,X( τ   Finally,suppose that F  is any subset of Y  such that )F(f 1−  is ω̂ -closed subset of  ).,X( τ    Since f  is 

a surjective completely contra ω̂ -closed map, V=))V(f(f 1−  is ω̂ -open subset of  ),Y( σ  and since Y  is 

submaximal, V  is open subset of  ).,Y( σ   Thus, f  is strongly contra ω̂ -quotient map.  

Theorem 5.10 (Pasting Lemma for Contra ω̂ -irresolute Mappings.) 

Let  ),X( τ   be a topological space such that BA=X ∪  where A  and B  are both  pre open and closed subsets of  

Let f: (A, τ |A) →(Y, σ) and f: (B, τ |B) →(Y, σ) be contra ˆω-irresolute functions such that f(x) = g(x) for every 

x ∈  A ∩ B. Then f  and g  combine to give a contra ω̂ -irresolute function )x(f=)x)(gf( ∇  for every Ax∈  and 

)y(g=)y)(gf( ∇  for every .By∈   

Proof.  Let F  be ω̂ -open subset of  ).,Y( σ   Then )F(g)F(f=)F()gf( 111 −−− ∪∇ . By hypothesis, )F(f 1−  and )F(g 1−  

are ω̂ -closed subsets of ))|,A( Aτ  and )|,B( Bτ  respectively. By [5] Theorem 6.30 (i) (a), )F(f 1−  and )F(g 1−  are 

ω̂ -closed subsets of  ).,X( τ   By [5] Theorem 4.11, )F(g)F(f 11 −− ∪  is ω̂ -closed subset of  ).,X( τ   Therefore, 

)gf( ∇  is contra ω̂ -irresolute function.  
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