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Abstract 

Let, R be an total local ring, I an Ideal of R , and let M be a finitely generated R -module. Then ( )i

jH M
 
 

Is I -cofinite in two cases. 1) I be a none zero principle Ideal. 2) I be a prime Ideal with dimension 1. In this 

paper we produce special example of the cofiniteness problem in local cohomology respect to a system of ideals. 

In fact we construct an ideal system with tridiagonal matrices of tridiagonal subsets which are true in the finite 

dimension in local cohomology modules. 
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1. Introduction 

Throughout this paper, R denotes a commutative Noetherien ring with non-zero identity and M is a finitely 

generated R -module. 

 

1.1 Definition (See [5, Definition 3.3.2 and Definition 9.1.3]) 

Let ϕ
 
be a system of ideals of R . The arithmetic rank of ϕ , denoted by ( )ara φ is defined as follows 

( ) max{ ( ) : }ara ara I Iϕ ϕ= ∈ . Note that ( )ara ϕ is either a positive integer, wheneverϕ is non-empty, or 

infinite. In particular, if { : 0}iI iϕ = ≥ then ( ) ( )ara ara Iϕ = .  

1.2 Definition(See[1, Definition5]) 

Let M be a finitely generated R -module. We define the finiteness dimension ( )f Mφ of M relative to ϕ  by 

( ) inf{ 0; ( )if M i H Mϕ ϕ= ≥  is not finitely generated} inf{ 0; ( ) 0, }ii IH M Iϕ ϕ= ≥ ≠ ∀ ∈
. 

1.3 Theorem 

Let ϕ be a system of ideals of R and M be a finitely generated R –module. Suppose that 0n ≥  is such that 

( )jH Mϕ  is finitely generated for all j n< and that ( ) 0j

JH M =  for all j n> and all J ϕ∈ . Then 

( )jH Mϕ , is ϕ –cofinite for all i. 

Proof. See [2, Theorem 4.8].  　 

1. 4 Corollary 

Let ϕ
 
be a system of ideals of R . Let M be a finitely generated R –module and I be an arbitrary ideal of R . 

)i If ( ) ( )ara f Mϕϕ ≤ , then ( )iH Mϕ  is ϕ –cofinite for all i . 

)ii If ( ) 0i

IH M =
 
for all ( )Ii f M≥ , then ( )i

IH M  is I –cofinite for all i . 

)iii If ( ) ( )Iara I f M≤ , then ( )i

IH M  is I –cofinite for all i . 

Proof. )i
 
If ( )f Mϕ is infinite then there is nothing to do any more. Hence we may assume that ( )f Mϕ is 

finite. So ( ) ( )f M araϕ ϕ=
 
by[5, Corollary 3.3.3]. Now the result follows easily from Theorem 1.3. Let 

{ ; 0}iI iϕ = > the statement )ii is immediate consequence of Theorem 1.3. and )iii is consequence of )i .　 

 

2. Special example 

2.1 Remark 

Let n  be an integer and ( )nD A be all bellow tridiagonal matrices n n×
 
which it

,
s elements is in A . Also we 

show determination H
 
by H  and transpose H  by ( )T−  for each H  in ( )nD A . 
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2.2 Definition 

Non-empty subset of U in ...nA A A= × ×  is called, tridiagonal subset of 
nA if 

1) ( ,..., )ni u u U∀ ∈ then 1

1( ,..., )n

nu u U
αα ∈ for all 1,..., ,n n Nα α ∈ . 

)ii There exist 1( ,..., )nw w U∈ and tridiagonal matrices , ( )nH K D A∈ that 

1 1 1( ,... ) ( ,..., ) ( ,..., )T T T

n n nH u u w w K v v= = for each 1 1( ,..., ), ( ,..., )n nu u v v U∈ . 

2.3 Theorem 

Let n N∈ and 1 1{( ,... ); ,...n nU x x x x= is an –regular sequence} then U is a tridiagonal set. 

Proof. See [5, Theorem 7.2].  　　　　 

2.4 Theorem 

Let U be a tridiagonal subset of 
kA  and let 1

1

{ ,( ,..., ) }
n

i n

i

Rx x x Uϕ
=

= ∈∑  then ϕ  is a system of ideals. 

Proof. Let W and Z be in ϕ . Then there exist 1 1( ,..., ), ( ,..., )n nu u v v U∈  which 1 ... nW Ru Ru= + +  and 

1 ... nZ Rv Rv= + +  . Since U  is tridiagonal then there exist 1( ,..., )nw w U∈  that 

1 1( ... ) ( ... )i i iw Ru Ru Rv Rv∈ + + ∩ + +  for each 1 i n≤ ≤ . Then 

2

1 1( ... ).( ... ) .i n nw Ru Ru Rv Rv W Z∈ + + + + =  for each 1 i n≤ ≤ . Also 
2 2

1( ,..., )
n

w w U∈ .( U is 

tridiagonal) then 
1

2 2... .
n

X Rw Rw W Z= + + ⊆ , it means .X W Z⊆  then ϕ  is a system of ideals.  　　　　 

2.5 Theorem 

Let M be a finitely generated R  –module and |I R≤ which IM M≠ .Then 

( ) inf{ ; ( , ) 0}i

M Rgrad I i Ext R I M= ≠ or ( ) 0i

IH M ≠ . 

Proof. Let ( )Mg grad I= .It will be proved by induction on g .　　　　  

 

3. Conclusion 

The following corollary is the main result of this paper. 

3.1 Corollary   

Let n
 
be a positive integer and let 1

1

{ , ,...,
n

i n

i

Rx x xϕ
=

= ∑  is an M –regular sequence} then ( )jH Mϕ  is ϕ  –

cofinite for all j . 

Proof. Note that by Theorem 2.4. ϕ
 
is a system of ideals. Now using Theorem 2.5.

 1( ,..., )nI x x=  and 

IM M≠ . Then ( ) lim ( ) 0
i

i i

IH M H M
ϕ

ϕ
∈

→
= = . Now by using Theorem 1.3. it will be proved.  　　　　 
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