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ABSTRACT 

This research provides ideals of the polynomial ring [ ]xF n
2 ( )1mod −nx associated with the code words of a 

cyclic code C. If the set of polynomials corresponding to codeword is given by me(c), an ideal of [ ]xF n
2

( )1mod −nx , it can be shown that C is a cyclic code. Principal ideals of cyclic codes are defined from a new 

view point involving polynomials. The potentialities of these codes for error control in computer applications are 
described in detail.  Error coding and decoding use mathematical formulas to encode data at the source into 
longer words for transmission. Performance of different types of error control codes has been investigated for 
application in computerized systems. Algebraic geometry over principal ideals of cyclic codes and their 
applications to error control are also discussed. A code region for optimal codes obtained has been constructed as 
predicted by Shannon’s Theorem. 
 

1.1 INTRODUCTION 

A nonempty subset B of a ring A is called an ideal of A if B is closed with respect to addition and negatives and B 

absorbs products in A. The various types of ideals include maximal ideals, prime ideals, radical ideals, primary 

ideals, principal ideals, primitive ideals and irreducible ideals. In this research a lot of attention has been given to 

principal ideals. These are ideals generated by a single element. 

 

A left principal ideal of a ring A is a subset of A of the form Ax={ }Aaax ∈: . A right principal ideal of a ring 

A is a subset of the form xA = { }Aaxa ∈: , A two-sided principal ideal is a subset of the form AxA=

{ }Asxsxasxasx nnnn ∈++ ...:... 1111 . In a commutative ring the three types of ideals are the same. In this 

research, ring A is the polynomial [ ]xF n
2 ( )1mod −nx .  Principal ideals of this ring can be used in error 

control (detection and correction) in computerized systems. One of the ways of identifying these ideals would be 

to develop a code region for cyclic codes of the ring polynomial [ ]xF n
2 ( )1mod −nx .By use of algebraic and 

projective geometry and Shannon’s Theorem it should be possible to develop and improve on ideals for optimal 

error control in computerized systems [7]. 
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Right ideals are stable under right-multiplication (IR∈ I) and left ideals are stable under left-multiplication (RI∈
I). I is a proper ideal if it is a proper subset of R, that is, I does not equal R. The ideal R is called the unit ideal 

[1]. 

 

Suppose we have a subset of elements Z of a ring R and that we would like to obtain a ring with same structure 

as R, except that the elements of Z should be zero. But if z1= 0 and z2 =0 in the new ring, then z1+z2 should be 

zero too, and rz1 as well as z1r should be zero for any element r. 

 

The definition of an ideal is such that the ideal I generated by Z is  exactly the set of elements that are forced to 

become zero if Z becomes zero and the quotient ring R/I  is the desired ring where Z is zero and only elements 

that are forced  by Z to be zero. The requirement that R and R/I should have the same structure is formalized by 

the condition that the projection from R to R/I is a ring homomorphism [2]. 

Any intersection of left ideals of R is again a left ideal of R containing X. If  x is any subset of R, the intersection 

of all left ideals of R containing x is a left ideal I of R said to be generated by X. I is the smallest left ideal of R 

containing X. 

 

The left  ideal of R generated by a subset X of R is the set of all finite sums of elements of R of the form ra where 

r ∈R  and  a ∈  X .That is, the left ideal generated by X  is the set of all   elements of the form  r1a1+…+r nan  

with  each r i in  R  and each ai in X [7]. 

 

By convention, 0 is viewed as the sum of zero such terms, agreeing with the fact that the ideal of R generated by 

Ø is {0}. 

 

If a∈R, then the left ideal of R generated by {a} is denoted by Ra. Ra is the set of elements of R of the form ra 

for r∈R. An analogous statement holds for aR, but not for RaR. 

 

If an ideal I of R is such that there exists a finite subset X of R generating it, then the ideal I is said to be finitely 

generated. 

 

In the ring Z of integers, every ideal can generated by a single number and the ideal determines the number up to 

its sign. The concepts of “ideal” and “number” are therefore almost identical in Z.  In an arbitrary principal ideal 

domain this is also true, except that instead of differing only by sign, the various generators of a given ideal may 

differ multiplicatively by any invertible element of the ring. This research investigates the capabilities of such 

principal ideals for optimal error control in computer applications [2]. 

According to William, S.[9], in digital transmission systems, an error occurs when a bit is altered between 

transmission and reception, that is a binary 1 is transmitted and a binary 0 is received or a binary 0 is transmitted 

and a binary 1 is received. Two general types of errors can occur: single bit errors and burst errors. A single bit 

error is an isolated error condition that alters one bit but doesn’t affect nearby bits. A burst error of length n is a 
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continuous sequence of n bits in which the first and the last bits and any number of intermediate bits are received 

in error. 

 

Error detection is the ability to detect the presence of errors caused by noise or other impairments during 

transmission from the transmitter to the receiver. Error correction is the additional ability to reconstruct the 

original, error free data. Error control is the ability to detect and correct errors using a given code [5] 

 

PRELIMINARIES  

Definition [2] 

A nonempty subset I of a ring A is called an ideal written I < A if 

 

(i) ( ) Ι∈+Ι∈∀ ,, yxyx  

(ii)  ( ) Ι∈−Ι∈∀ yxyx,  

(iii)  ( )( ) Ι∈Α∈∀Ι∈∀ xyyx  

I is an additive subgroup of A, so we can form the quotient group 

A/I = { }Aaa ∈+Ι  the group of cosets of I with addition defined by, for Aba ∈,  

( ) ( ) ( )baba ++Ι=+Ι++Ι . Further A/I forms a ring by defining for a, b, ∈A,                        

   (I+a) (I+b) = I+ (ab). A/I is the quotient ring. 

 

The mapping  

xx +ΙΙΑ→Α a,/:φ   is a surjective ring homomorphism, called the natural  map whose Kernel is  

{ } IxxKer =Ι=+ΙΑ∈=φ . 

 

Thus all ideals are Kernels of ring homomorphism. Conversely if aa ′+Ι=+Ι  and bb ′+Ι=+Ι  then 

Ι∈′−′− bbaa ,  so  

bababaabbaab ′′−′+′−=′′−  

                      = ( ) ( ) Ι∈′′−+′− baabba  

baab ′′+Ι=+Ι⇒  

Kernels of ring homomorphism with domain A are ideals of A. 

A principal ideal P of A   is an ideal generated by a single element that is for some Ax∈  

{ }Α∈=Α=Α= aaxxxP . 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.7, 2013 

 

58 

Polynomials are associated with the codeword of a cyclic code C [5]. Let ( ) Caa n ∈,...1 . Then the 

corresponding polynomial is .... 1
21

−++ n
nxaxaa we denote the set of polynomials corresponding to 

codewords by( )CΙ . 

 

If ( ) ( )Cxf Ι∈  represents a member of C, then ( ) ( )Cxfx Ι∈κ
. But C is linear. Therefore if 

( ) ( ) ( )Cxgxf Ι∈,  so is ( ) ( )xgxf +  and hence  ( ) ( )xhxf  for any ( ) [ ]( )1mod −∈ nxxFxh . 

Theorem 1 

Let C be a set of vectors in [ ]xF n
2 ( )1mod −nx . Then C is a cyclic code if and only if I(C) is an ideal of

[ ]xF n
2 ( )1mod −nx . 

 

Proof  

Assume that I(C) is an ideal of [ ]xF n
2 ( )1mod −nx . We need to prove that C is a cyclic code.  We start by 

proving that is C is a linear code. To do this we need to know that C is non-empty, is closed under addition and 

is closed under scalar multiplication. The first two facts follow from the fact that ideals are closed under addition 

and contain 0. 

 

Scalars correspond to polynomials of degree 0 and these polynomials belong to our ring. If S is scalar, and

( )Cxaxaa n
n Ι∈++ −1

21 .... , then by definition, ( )CxSaxSaSa n
n Ι∈++ −1

21 ...    so that 

( ) .,...,21 CSaSaSa n ∈  Therefore C is linear. 

We also know that a cyclic shift of ( )naaa ,..., 21  corresponds in I(C) to multiplication by x. By definition x

( ) ( )Cxaxaa n
n Ι∈++ −1

21 ... . Hence C is cyclic code. 

 

Conversely, assume that C is a cyclic code. Then as C is a linear code it contains the zero vectors and is closed 

under addition. Hence I(C) is closed under addition and contains the zero polynomial. 

Say p(x) is in I(C). Let h(x) be a polynomial in [ ]xF n
2 ( )1mod −nx . We need to show that ( ) ( ) ( )Cxpxh Ι∈

.Let ( ) 11
21 ,...... −− ++++= n

n
i

i xhxhxhhxh so that

( ) ( ) ( ) ( ) ( ) ( )xpxhxpxhxxphxphxpxh n
n

i
i

11
21 ...... −− +++++= . 

Consider ( )xpxh ii . As multiplication by 
1−ix  corresponds to a sequence of cyclic shifts and C is a cyclic code 

we see that ( ) ( )Cxpxi Ι∈−1 . 
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As C is closed under scalar multiplication it follows that ( )( ) ( )Cxpxh i
i Ι∈−1

. But C is closed under addition. 

Therefore ( ) ( ) ( )Cxpxh Ι∈   [5] 

Theorem 2 

Every ideal of [ ]xF n
2 ( )1mod −nx  is principal. 

Proof.  

Let I be any ideal of [ ]xF n
2 ( )1mod −nx . If I contains nothing but the zero polynomial, I is the principal ideal 

generated by 0. If there are non-zero polynomials in I, Let b(x) be any polynomials of lowest degree in I. We will 

show that ( ) ,xb=Ι  which is to say that every element of I is a polynomial multiple  ( ) ( )xqxb  of ( )xb . 

Indeed if a(x) is any element of I, we may use division algorithm to write ( ) ( ) ( ) ( ),xrxqxbxa += where 

r(x) = 0 or deg r(x) < deg b(x). Now, r(x) = a(x) – b(x)q(x)  but a(x)  was chosen in I, and   ( ) Ι∈xb . Hence

( ) ( ) Ι∈xqxb . It follows that ( ) Ι∈xr . 

If ( ) 0≠xr  its degree is less than the degree of b(x). But this is impossible because b(x) is a polynomial of 

lowest degree in I. Therefore   r(x) = 0. Finally a(x) = b(x) q(x). So every member of I is multiple of b(x) as 

claimed [2] 

Its now clear that I is generated by any one of its members of lowest degree. Such a polynomial is called the 

generator polynomial g(x). 

Theorem 3  

If g(x) is the generator polynomial of the cyclic code C of length n then g(x) divides ∈−1nx [ ]xF n
2

( )1mod −nx . 

Proof  

If not, we can write ( ) ( ) ( )xrxqxgxn +=−1  where r(x) is a nonzero polynomial with lower degree than 

g(x). Since ( ) ( ) Cxgxq ∈  and ( ) ( ) ( )xgxqxr −=  in this ring, the linearity of C implies ( ) Cxr ∈  and thus 

contradicts the definitions of g(x) as the polynomial of minimum degree in C. 
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Now given any ( ) ( )Cxg Ι∈ , we can form the ideal ( )xg  and hence get a corresponding code by taking all 

the products of ( )xg  with members of [ ]xF n
2 ( )1mod −nx . Such a code must be generated by a factor of

1−nx  [4] 

Theorem 4 

If  C is a cyclic  code  of length n and with a generator polynomial ( )xg  of degree k , then a polynomial ( )xp  

of degree < n is a codeword if and only if ( )xp  ( ) 0=xh , where  ( )xh  is the polynomial of degree n-k  

satisfying ( )xg ( )xh  = 1−nx . 

Proof  

If ( )xC  is a codeword then we know that ( )xC =  ( )xf ( )xg  for some polynomial ( )xf . Hence since ( )xg

( ) 0=xh , we have c(x) h(x) =0.  Conversely, suppose that ( )xp  is a nonzero polynomial satisfying( )xp

( ) 0=xh .Then ( )xp must have degreeκ≥ . Thus if ( )xp  is not a codeword, we know that it is not divisible 

by ( )xg  and so ∃  a polynomial  ( )xr  of degree < degree( )xg , with ( )xp = ( ) ( )+xgxq ( )xr . 

Since ( )xp ( )xh = 0 and ( ) ( )xgxq ( ) 0=xh  we must have( )xr ( ) 0=xh . But since the degree of       ( )xr < 

degree ( )xg   the condition ( )xr ( )xh =0 is impossible unless ( )xr = 0 [4] 

The polynomial    ( )xh  is called the parity check polynomial of the code C. 

By Theorem 4 there is a one to one correspondence between cyclic codes of length n and monic divisiors of the 

polynomial ring [ ]xF n
2 ( )1mod −nx . 

Richard Hamming in 1950 developed important codes called Hamming codes [6]. Certain forms of these codes 

can detect and correct some errors .We now discuss Hamming distance and Hamming weight in the context of 

cyclic binary Hamming codes suitable for computer architecture.\ 

Definition 

The Hamming distance on the set [ ]xF n
2 ( )1mod −nx  is ( ) { }iiH yxniiyxd ≠≤≤= ,1:,  for 

( )nxxx ,...,1=  and ( )nyyy ,...,1= . 
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Therefore ( ) yxyxdH =⇔= 0,  and ( )=yxdH ,  ( )yxdH ,  ∈∀ yx, [ ]xF n
2 ( )1mod −nx   and

( ) ( ) ( ) ∈∀+≤ zyxzydyxdzxd HHH ,,,,, [ ]xF n
2 ( )1mod −nx . From this definition, Hamming 

distance Hd  is a metric on the codespace. 

We define the minimum distance d(C) of a code C [ ] ( )1mod2 −⊂ nn xxF by 

( ) ( ){ }yxCyxyxdd C ≠∈= ,:,min . 

The Hamming weight  ( )xW  of an element of [ ]xF n
2 ( )1mod −nx  is its Hamming distance with ;0  for 

( )nxxx ,...1=  

( )xw { }0,1: ≠≤≤= ixnii . Hence for ∈yx,  [ ]xF n
2 ( )1mod −nx  ( ) ( )yxwyxdH −=,  

For a linear code, ( )Cd   is the minimal weight of a non-zero element in C. 

Lemma 1  

 A code C of length n over [ ]xF n
2 ( )1mod −nx  can detect t errors if and only if ( ) 1+≥ td C . The code C can 

correct t errors if and only if ( ) 12 +≥ td C . 

Proof  

The condition ( ) 1+≥ td C  means that a message at Hamming distance at most t from an element c  of C and 

distinct from c  does not belong to C. This is equivalent to saying that C can detect t errors. 

For the second part of the Lemma, assume first that( ) 12 +≥ td C . Let [ ] ( )1mod2 −∈ nn xxFx  and let 

Cand ∈21 cc  satisfy ( ) td ≤11,cx  and ( ) td ≤22 ,cx  then by triangle inequality 

( ) ( )cdtd <≤ 2, 21 cc . Therefore 21 cc = . 

Conversely assume( ) :2td C ≤  there is a none zero element Cc∈  with ( ) tcw 2≤ , hence c  has atmost 2t  

non-zero components. Split the set of indices of the non-zero components of c into two disjoint subsets 1Ι  and 

2Ι  having atmost t elements. Next we define [ ] ( )1mod2 −∈ nn xxFx  as the point having the same components 
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K 

ix  as c for 1Ι∈i  and 0 for 1Ι∉i . Then in the Hamming ball of centre x  and radius t there are atleast two 

points c, namely 0 and c . Hence   is not  

t –error correcting [8]  

This means that the ability of a code to correct errors is related to its ability to detect errors. Hence a code which 

can correct errors can effectively be used for the purpose of controlling errors. 

Theorem 5  

A cyclic code generated by a polynomial of degree n-k detects any burst- error of length n-k or less. 

Proof  

Any burst-error polynomial can be factored into the form ( ) ( )xExxE i
1=  where ( )xE1  is of degree b-1, 

where b is the length of the burst. This burst can be detected if ( )xp  does not evenly divide ( )xE . Since  ( )xp  

is assumed not to have x as a factor, it could divide E(x) only if it could divide ( )xE1 . But if knb −≤ , ( )xp  

is of higher degree than ( )xE1  and therefore, certainly could not divide( )xE1  [4] 

  

It is now clear that principal ideals of the polynomial ring [ ]xF n
2 ( )1mod −nx  can detect the two general types 

of errors which may occur: Single bit errors and burst errors. We now need to look for optimal codes by use of 

Shannon’s theorem and Geometrical construction [7]. 

 

 If the point ( )κδ ,  is in the code region, then it seems reasonable that the code region should contain as well the 

points( )κδ ,'  , δ´< δ, corresponding to codes with the same rate but smaller distance and also the points( )',κδ , 

κ ´ <κ , corresponding to codes with the same distance but smaller rate. Thus for any point ( )κδ,   of the code 

region, the rectangle with corners ( ) ( ) ( )κδ ,0,0,,0,0  and ( )κδ,  should be entirely contained within the code 

region.  

Any region with this property has its upper boundary function non increasing and continuous.  

Graph 1 Code region 
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Conclusion  

So far we have established that if ∈C [ ]xF n
2 ( )1mod −nx  then C is a cyclic code if and only if I(C) is an ideal 

of [ ]xF n
2 ( )1mod −nx . Every ideal of [ ]xF n

2 ( )1mod −nx  is principal. 

Our search is for codes which are contained in the code region of graph 1. Before we make any generalizations 

we would analyse all the principal ideals in the polynomial ring [ ]xF n
2 ( )1mod −nx  with 20≤n . The 

objective is to characterize those ideals which satisfy Shannon’s theorem, can be plotted in the code region and 

hence suitable for computer application. This is work in progress. 
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