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ABSTRACT

This research provides ideals of the polynomiaj rﬁb”[x] moc(x” —1)associated with the code words of a

cyclic code C. If the set of polynomials correspiogdto codeword is given byne(c) an ideal oiFZ“[X]

moc(x” —1), it can be shown that C is a cyclic coeincipal ideals of cyclic codes are defined fromeav

view point involving polynomials. The potentialisi@f these codes for error control in computer igppibns are
described in detail. Error coding and decoding mmghematical formulas to encode data at the sauatoe
longer words for transmission. Performance of déffe types of error control codes has been invats for
application in computerized systems. Algebraic getynover principal ideals of cyclic codes and thei
applications to error control are also discussedode region for optimal codes obtained has beastnacted as
predicted by Shannon’s Theorem.

1.1 INTRODUCTION

A nonempty subseB of a ringA is called an ideal oA if B is closed with respect to addition and negativesBa
absorbs products iA. The various types of ideals include maximal ideptime ideals, radical ideals, primary
ideals, principal ideals, primitive ideals and dueible ideals. In this research a lot of attentias been given to

principal ideals. These are ideals generated liygheselement.

A left principal ideal of a ring A is a subset ofof\the formsz{aX: all A}. A right principal ideal of a ring

A is a subset of the forriA :{xa: all A}, A two-sided principal ideal is a subset of thenfoAxA=
{)gaq +...+ Xas,: XS...x;s, U A}. In a commutative ring the three types of ideats the same. In this
research, ring A is the ponnomEg‘[x] mocix” —1). Principal ideals of this ring can be used in error
control (detection and correction) in computerizgdtems. One of the ways of identifying these sl@ajuld be

to develop a code region for cyclic codes of ting rpi)olynomiaIFZ”[x] mocix” —1).By use of algebraic and

projective geometry and Shannon’s Theorem it shbalgossible to develop and improve on ideals fdineal

error control in computerized systems [7].
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Right ideals are stable under right-multiplicat@RLI1) and left ideals are stable under left-multiplioatfR1L]

1). I is a proper ideal if it is a proper subsetpfthat is,| does not equdR. The idealR is called the unit ideal

(1].

Suppose we have a subset of elem&nt$ a ringR and that we would like to obtain a ring with sasteeicture
asR, except that the elements dfshould be zero. But #,= 0 andz, =0 in the new ring, them+z, should be

zero too, andz; as well ag;r should be zero faanyelementr.

The definition of an ideal is such that the idegenerated by is exactly the set of elements that are forced to
become zero i¥ becomes zero and the quotient riRf is the desired ring whef2is zero and only elements
that are forced b¥ to be zero. The requirement tiRtnd R/l should have the same structure is formalized by
the condition that the projection froRto R/l is a ring homomorphism [2].

Any intersection of left ideals d® is again a left ideal dR containingX. If x is any subset dR, the intersection

of all left ideals ofR containingx is a left ideal of R said to be generated By | is the smallest left ideal &

containingX.

The left ideal oR generated by a subs¢of R is the set of all finite sums of elements06f the formra where
r UR and a I X .That is, the left ideal generated KHyis the set of all elements of the forma;+...+ra,
with eachr;in R and eacly in X [7].

By convention, 0 is viewed as the sum of zero gacms, agreeing with the fact that the ideaRafenerated by
@ is {0}.

If alIR,then the left ideal oR generated by {a} is denoted IRa. Rais the set of elements & of the formra

for rLJR. An analogous statement holds &R,but not forRaR.

If an ideall of Ris such that there exists a finite subsetf R generating it, then the idehls said to be finitely

generated.

In the ringZ of integers, every ideal can generated by a simghaber and the ideal determines the number up to
its sign. The concepts of “ideal” and “number” #nerefore almost identical id. In an arbitrary principal ideal
domain this is also true, except that instead fé¢ing only by sign, the various generators ofi\aeg ideal may
differ multiplicatively by any invertible element of the ring. This reseairolestigates the capabilities of such
principal ideals for optimal error control in compuapplications [2].

According to William, S.[9], in digital transmissiosystems, an error occurs when a bit is alteredsdsmn
transmission and reception, that is a binary taissmitted and a binary 0 is received or a binais/téansmitted
and a binary 1 is received. Two general types mfrercan occur: single bit errors and burst errArsingle bit

error is an isolated error condition that altere bit but doesn’t affect nearby bits. A burst ewbtengthn is a
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continuous sequence oits in which the first and the last bits and aoynber of intermediate bits are received

in error.

Error detection is the ability to detect the presewf errors caused by noise or other impairmenting
transmission from the transmitter to the recei&ror correction is the additional ability to restruct the

original, error free data. Error control is thelipito detect and correct errors using a givenecfi]

PRELIMINARIES
Definition [2]

A nonempty subsdtof a ringA is called an ideal written K A if

@ (Ox,yOl)x+y,0l
(ii) (DX,yDI)x—y 11
@iy  (OxO1)(OyOA)xyOl

| is an additive subgroup of A, so we can form thetignt group

All = {I +a ‘ all A} the group of cosets of | with addition defined fuy, a,b [ A

(l + a) + (l + b) =1+ (a+ b) . FurtherA/I forms a ring by defining foa, b, L1A,

(I+a) (I+b) = I+ (ab). A/l is the quotient ring.

The mapping

¢ZA > AllLX>1+X isa surjective ring homomorphism, called theurst map whose Kernel is

Ker @={xOAll+x=1}=1.

Thus all ideals are Kernels of ring homomorphisnen@rsely ifl +a=1+a" andl +b=1+b' then
a—a,b-b' 0Ol so
ab—ab' =ab-d' +a' -ab
=ab-b')+(a-a')o' Ol
=l+ab=I1+alb

Kernels of ring homomorphism with domakmare ideals oA.

A principal idealP of A is an ideal generated by a single element thar isomeXDA

P=Ax=xA={ax | aDA}
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Polynomials are associated with the codeword ofyelicc code C [5]. Let (ai,---an)DC. Then the

n-1
corresponding polynomial iﬁl + a2X+ ...anX -we denote the set of polynomials corresponding to

codewords bj/(C) .

If f(X)D|(C) represents a member &, then XKf(X)E”(C). But C is linear. Therefore if

f(x), g(x)01(C) so is f(x)+ g(x) and hence f (X)h(X) for anyh(X) O F[x](modx“ —1).
Theorem 1

Let C be a set of vectors IF?”[X] moc(x” —1). Then Cis a cyclic code if and only ifC) is an ideal of

F,[x] mod(x" -1).

Pr oof

Assume that(C) is an ideal oFZ”[X] moc(x” —1). We need to prove th& is a cyclic code. We start by

proving that is s a linear code. To do this we need to know @& non-empty, is closed under addition and
is closed under scalar multiplication. The firsotfacts follow from the fact that ideals are closedier addition

and contain 0.

Scalars correspond to polynomials of degree O andet polynomials belong to our ring. 3fis scalar, and
a +axX+..a,x" 01(C) , then by definition, S§ + Sa,x+..Sg,x" " [ I(C) so that
(San2 ,...,San)D C. Therefore Cis linear.

We also know that a cyclic shift c(ai,az,..an) corresponds in(C) to multiplication byx. By definition x

(’611 +a,X+ ...aan_l)D |(C). HenceC is cyclic code.

Conversely, assume th@tis a cyclic code. Then &3is a linear code it contains the zero vectorsiarndosed

under addition. HenckC) is closed under addition and contains the zerorjotyal.

Sayp(x)is inI(C). Leth(x) be a polynomial ifF"[] mocixn —1). We need to show thaix) p(x) 01(C)

Let h(x)=h +hx+..+hx™+.h x,"* s0 that

h(x)p(x) = b, p(x) + h,xp(x) + ...+ R X p(x) + ...+ h x"* p(x).

i-1
Considelh X p(X). As multiplication by X' corresponds to a sequence of cyclic shifts@igla cyclic code

we see thax' ™ p(X) m (C) :

58



Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Lo}
Vol.3, No.7, 2013 ISE

As Cis closed under scalar multiplication it followsath, (Xi_1 p(X))D I(C). ButC is closed under addition.

Thereforeh(x)p(x) J1(C) 5]

Theorem 2

Every ideal ofFZ”[x] mocix” —1) is principal.
Pr oof.

Letl be any ideal Oan[X] moc(x” —1). If I contains nothing but the zero polynomiais the principal ideal

generated by 0. If there are non-zero polynomials lLet b(x) be any polynomials of lowest degred iwWe will

show thatl = <b(X)>, which is to say that every elementla$ a polynomial multiple t(x)q(x) of b(X)

Indeed ifa(x) is any element of, we may use division algorithm to writa(X) = b(X)C](X) + I’(X), where
r(x) = 0 or degr(x) < degb(x). Now, r(x) = a(x) — b(x)q(x) buta(x) was chosen ih, and b(X)DI . Hence
t(x)q(x) Ul It follows thatr(x) ar.

If r(x) # 0 its degree is less than the degreeb@d). But this is impossible becau$éx) is a polynomial of

lowest degree ih. Therefore r(x) = 0. Finally &) = b(x) q(x) So every member dfis multiple ofb(x) as

claimed[2]

Its now clear that is generated by any one of its members of lowegtek. Such a polynomial is called the

generator polynomiaj(x).

Theorem 3

If g(x) is the generator polynomial of the cyclic co@eof length n then g(x) divides X" =10 FZ“[X]
moc(x” —1).

Pr oof

If not, we can writeX" —1= g(x)q(x)+ r(x) wherer(x) is a nonzero polynomial with lower degree than
g(x). Since c(x)g(x) JC and I‘(X) = —c(x)g(x) in this ring, the linearity o€ implies r(x)D C and thus

contradicts the definitions @f(x) as the polynomial of minimum degreeGn
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Now given an)g(X)D I(C), we can form the ides(lg(x» and hence get a corresponding code by taking all
the products ofg(x) with members oFZ”[X] mocix” —1). Such a code must be generated by a factor of
X" =11[4]

Theorem 4

If Cis acyclic code of length and with a generator polynomiag(x) of degreek, then a ponnomiaIp(X)

of degree <n is a codeword if and only ip(X) h(x) =0, where h(x) is the polynomial of degree-k

satisfying g(x) h(x) = x" 1.
Pr oof

If C(X) is a codeword then we know tk@(x) = f(X) g(X) for some polynomiaf (X) . Hence sincg(x)

h(X) 0, we havec(x) h(x) =0. Conversely, suppose thap(x) is a nonzero polynomial satisfyir(g(x)

h X) 0.Then p(X) must have degree kK . Thus if p(X) is not a codeword, we know that it is not divisibl

by g(X) and soL a polynomial r(x) of degree < degreg:(x), with p(X)= C(X)g(x)+ r(x).

Since p(X) h(X)= 0 and C(X)g(x) h(x) =0 we must havdé(x) (x) = 0. But since the degree of r(x) <
0

h
degreeg(x) the conditionr(X) h(X =0 is impossible unlesﬁ(x): [4]
The polynomial h(X) is called the parity check polynomial of the cdtle

By Theorem 4 there is a one to one correspondegtyeebn cyclic codes of lengthand monic divisiors of the

polynomial ringF"[x] mocix” —1).

Richard Hamming in 1950 developed important coggled Hamming codes [6]. Certain forms of theseesod
can detect and correct some errors .We now diddassming distance and Hamming weight in the contdxt

cyclic binary Hamming codes suitable for computeh#ecture.\
Definition
The Hamming distance on the sFtZ”[X] mO(an _1) is dy (X!X):{i sisnx # yl} for

X = (XX ) any = (3.,
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Therefore d,, (l(' y)=0 = X=y and d, (L(, y)= d, (l(il’) OUx yU an[x] moc(x” _1) and

d (X Z < d (2( )+d Y Z)DX Y, ZO F[¥] moc(x - ) From this definition, Hamming

distanced, is a metric on the codespace.

We define the minimum distance d(C) of a code C DFZ”[x]mod(x“ —1) by

die) = min{d(g(,z):l(,XD Cx# y}.

The Hamming weightW(l() of an element oiFZ”[X] moc(x” —1) is its Hamming distance witB; for

=(4,0-,)
w(x) :{i A<isnx # 0}. Hence forX, y [J F (] mod(x" -1} d, (xy)=wx-vy)
For a linear coded(c) is the minimal weight of a non-zero element in C.

Lemmal

A codeC of lengthn over FZ”[X] moc(x” —1) can detect errors if and only id(c) >t +1. The codeC can

correct terrors if and only itl ) 2 2t +1.

Pr oof

The conditiond(c) >t +1 means that a message at Hamming distance attrfrosb an element of C and

distinct from C does not belong 6. This is equivalent to saying th@tcan detect errors.

For the second part of the Lemma, assume firstdpgt= 2t +1. Let XOF) [x]modx” —1) and let

c,andc, L C satisfy d(Xl,Cl) <t and d(X2 , Cz) <t then by triangle inequality
d(Cl,Cz) S2t< d(C) . Thereforec, =C,.

Conversely assurrda(c) < 2t: there is a none zero elemedit]C with vv(g)s 2t, henceC has atmosPt

non-zero components. Split the set of indices efrthn-zero components & into two disjoint subset$; and

|, having atmost elements. Next we defink [ FZ”[X] moc(x” —1) as the point having the same components
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X asC for i I, and 0 fori JI,. Then in the Hamming ball of centi and radiug there are atleast two

pointsc, namely O andC. Hence is not

t —error correcting8]

This means that the ability of a code to correntrsris related to its ability to detect errorsnkle a code which

can correct errors can effectively be used forpmpose of controlling errors.
Theorem 5

A cyclic code generated by a polynomial of degrdedetects any burst- error of lengtkk or less.

Proof

Any burst-error polynomial can be factored into floem E(X)= X Ei(x) where Ei(x) is of degreeb-1,
whereb is the length of the burst. This burst can be deteif p(X) does not evenly dividE(X) . Since p(X)
is assumed not to haweas a factor, it could dividE(x) only if it could divideEl(X). Butifb<n-k, p(X)

is of higher degree thak; (X) and therefore, certainly could not diviEgz(X) [4]

It is now clear that principal ideals of the polymal ring FZ”[X] moc(xn —1) can detect the two general types

of errors which may occur: Single bit errors andsberrors. We now need to look for optimal codgsube of

Shannon’s theorem and Geometrical construction [7].

If the point (5, K) is in the code region, then it seems reasonahbletie code region should contain as well the
points(O_',K) , 8’< 8, corresponding to codes with the same rate bullesnuhstance and also the poi(urﬁ K'),
K~ <K, corresponding to codes with the same distanceatler rate. Thus for any poi(B,K) of the code

region, the rectangle with corne(ﬁ),O), (5 ,O),(O, K) and (5,K) should be entirely contained within the code
region.
Any region with this property has its upper bouydainction non increasing and continuous.

Graph 1 Coderegion

Normalized 1
Dimension (Rate)
K (6, %)
K .
7/
O % » Normalized minimum distance Q
) )
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Conclusion

So far we have established tha€Gf[] FZ"[X] moo(x” —1) thenC is a cyclic code if and only I{C) is an ideal

of K [X] moc(x" —1). Every ideal ofFZ”[X] moo(x” —1) is principal.

Our search is for codes which are contained irctte region of graph 1. Before we make any gerzatidins

we would analyse all the principal ideals in thdypomial ring FZ“[X] moo(x“ —1) withn < 20. The

objective is to characterize those ideals whickssaShannon’s theorem, can be plotted in the cedén and

hence suitable for computer application. This isknio progress.
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