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Abstract

In this paper, we study the cyclic algorithm foe tsplit common fixed point problem (SCFPP) and ipidtset
split feasibility problem (MSSFP). Furthermore weoyed the strong convergence for the (SCFPP) and
(MSSFP) which extend and improve the result of Bn@/and H.K. Xu [9] from a weak convergence torargf
convergence.
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1. Introduction

Let H and K be real Hilbert spaces, A:-H K be a bounded linear operator afidbe an adjoint of A. Given
integer's p, r= 1 and also given sequence of nonempty, closed/esosubset$C;}? and {Qj}]r,of H and K

respectively. The convex feasibility problem (CHB)formulated as finding a pointc*e H satisfying the

property:
14
X € ﬂ C;. (1.1)

i
Note that, CFP (1.1) has received a lot of attentioe to its extensive applications in many apptiesgiplines
diverse as approximation theorem, image recovegyas processing, control theory, biomedical engiiray,
communication and geophysics (see [1-3] and threreate therein).
The multiple set split feasibility problem (MSSFRas recently introduce and studied by Censo, Hifvitopf
and Bortfeld, see [4] and is formulated as findingointx*e H with the property:
p

x* € ﬂ C;and Ax* € ﬂ Q; (1.2)

t J
If in a MSSFP (1.2) p = r = 1, we get what is adlithe split feasibility problem (SFP) see [5], whiis
formulated as finding a point,”e H with the property:

x*€Cand Ax* € Q (1.3)
where C and Q are nonempty, closed and convex tsubsdd and K respectively.
Note that, SFP (1.3) and MSSFP (1.2) model imaggeval (see [5]) and intensity - modulated radiati
therapy (see [15, 16]) and have recently been etudiy many researchers [6, 7 and 17-25] and refesen
therein.
The MSSFP (1.2) can be viewed as a special cabe @FP (1.1) since (1.2) can be rewriting as

p+r

x*eﬂCi, Cpyj = {x*EH:x*EA‘l(Qj), 1Ser}.

L
However, the methodologies for studying the MSSER)(are actually different from those for the GEPL) in
order to avoid usage of the inverse of A. In otlerd, the method for solving CFP (1.1) may not ggplsolve
MSSFP (1.2) straight forwardly without involvingetiinverse of A. The CQ algorithm of Byne [6, 7kisch an
example where only the operator of A is used withiowlving the inverse.
Since every closed convex subset of Hilbert spadhé fixed point set of its associating projectitre CFP
(1.1) becomes a special case of the common fixed pooblem (CFPP) of finding a poirte H with property:

P
X € ﬂFix(Ti). (1.4)

where eaclf; : H — H are some (nonlinear) mapping. Similarly the MSSER) becomes a special case of
the split common fixed point problem (SCFPP) [8finfling a pointc*e H with the property:

87



Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) Lo}

Vol.3, No.7, 2013 ISE
p r

X € ﬂFix(Ui) and Ax" € ﬂFix(Tj) (1.5)

t ]
where eachy;: H; » H; (i=1,2,3.. p)andT;:H, » H, (j =1,2,3... r) are some nonlinear operators. If p
=r =1, problem (1.5) is reduces to find a paifd H with property:
x* € Fix(U) and Ax™ € Fix(T) (1.6)
This is usually called the two-set SCFPP.
The concept of SCFPP in finite dimensional Hiltmgace was first introduce by Censor and Segal[&@g&ho
invented an algorithm of the two-set SCFPP whiahegate a sequence,{} according to the following iterative
procedure:
Xpe1 = UCe, + yA* (T — DAx,),n =0, (1.7)

where the initial guess, € H is choosing arbitrarily anl < y < ”Al”Z. By making used of product pace

technique, Censor and Segal [8] introduced analgarithm for the general SCFPP (1.5) which gemeeat
SequenceX, } through the following parallel iterative algorith
Xpt1 = Xp + Y(Zi:l(Ui - I)xn +Zj=1 ﬁ](T] - I)Axn) (18)
where 0 <y <2/LwithL =37 o + (X7-,B;)IAl%
Under suitable assumption impose on paramete}safnd {f;} and for a particular class of operators (called
directed operators, see section 2), Censor andl $&gproved convergence of algorithm (1.7) and8jlto
solution of problem (1.6) and (1.5) respectivelyaifinite dimensional Hilbert space.
Evidently, problem (1.6) is a particular case af tfeneral SCFPP (1.5). However the correspondiyayigim
(1.8) for the general SCFPP (1.5) does not reduedgorithm (1.7) for problem (1.6).
It was in 2011, F. Wang and H.K. Xu [9] that inttmgd a new algorithm for solving problem (1.5) whic
included algorithm (1.7) as a special case for $@bSCFPP (1.6) and convert the SCFPP (1.5) tguainadent
common fixed point problem.
More precisely, they introduced for eachs j < r, a mapping/; define as

Vi =1+ (1/AIDA" (T, - DA
and showed that SCFPP (1.5) is equivalent to thenoon fixed point problem:
x* € Fix(Vy) and Ax™ € Fix(T)) (1.9)
This conversion enables one to solve SCFPP (1.9ppyying the existing iterative algorithm for sioly the
common fixed point problem (1.9).
Motivated by these results, in this paper we exi@mdl improved the result of F. Wang and H.K. Xuffem a
weak convergence to a strong convergence

2. Preliminaries

Throughout this paper, we adopt the notation:
e |: the identity operator on Hilbert space H.

e Fix (T): the set of fixed point of an operaforH —» H
e (: The solution set of SCFPP (1.5).

«  w,(x,): The set of the cluster point of in the weak topology i.e{zl Xn; of x, such that Xp; = x}

e x, - x:{x,} Converge in norm to x

«  x, = x: {x,} Converge weakly to x
Definition 2.1 Assume that C is a closed convex nonempty sulfseteal Hilbert space H. A sequerag} in
H is said to be Fejer monotone with respect to &nd only if||x,., — z|| < |lx, — z||, foralln=1and z €
C
Definition 2.2 letT: H —» H be an operator. We say th@dt— T) is demiclosed at zero, if for any sequence
{x,}in H, there holds the following implication:
X, = x and (I = T)x, > 0asn - oo, then(I — T)x = 0.
Definition 2.3 Let H be a real Hilbert space and Aey € H. Following Haugazeau [10], we ufdx,y) to
denote the half - space determineddpy; namely H(x,y) = {(u — y,x — y) < 0}
Definition 2.4 An operatorT: H - H is said to be a class = operator, if for eachx € H, Fix(T) <
H(x,T(x)) or equivalently,{z- Tx,x — Tx) < 0,for all ze Fix (T) and x € H.
Remark 2.5 A classt operator is also called directed operator se&28, separating operator see [13] or cutter
operator see [14]. Classeperators are important because they include ryg®eyof nonlinear operators arising
in applied mathematics such as approximation the@ned convex optimization theorem.
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Definition 2.6 An operatofl: H - H is said to be

(@ nonexpansive ifiTx — Ty|| < |lx — y||, for allx,y € H

(b) quasi-nonexpansive Hix(T) # @ and|[Tx — z|| < |[|x — z||, for allx € H and z € Fix(T)

(c) strictly quasi - nonexpansive if Fix(#® and||Tx — z|| < ||x — z||,for all x € H/Fix(T) and z €

Fix(T)
(d) «-strongly quasi-nonexpansive if there exist> 0 with the property:||Tx — z||* < ||x — z||* —
allx — Tx||?, for allx € H and z € Fix(T).

The operatof, = (1 — A) I + AT, A€ (0,2) is called a relaxation of T.
Lemma 2.7 [26] Let {x,,} be a sequence in a Banach space E. We haveltbeifty result:

) x, ~x,e f(x,) = f(x)foreachf e E*;

(i) x, > X=x, = x;

(i) x, = x, = {x,}is bounded andlx|| < limimf,_,||x, ||

(V) x, =x (INE).f, = f (NE"),= f(x,) = f(x) (inR).
Remark 2.8: Lemma 2.7 (ii) Show that strong convergence implies weakveogence. The converse however
is false i.e. weak convergence does not imply gtamvergence.
Lemma 2.9 [26] Let E be a finite dimensional normed linegase, then the weak and strong topologies
coincide. (In particular, a sequence,f in E converges weakly if and only if it convergasongly).
Lemma2.10([9]letT : H — H be an operator. Then the following statementeqtévalent

(i) T is class < operator;

(i) l[x — Tx|| <{x- z,x — Tx),ze€ Fix(T) and x € H;

(i) There hold the relation||z — Tx||? < ||z —x||? = |lx — Tx||?,z€e Fix(T) and x e H .
Consequently a class-operator is 1 - strongly quasi - nonexpansive.
Lemma 2.10 [14, 11]

(i) The fixed point set of a class operator T, is closed and convex, indeed

Fix(T) = ﬂ H(x, Tx) .

(i) If T is class — operator, then so is the relaxatiorTpffor 4 € (0,1).
(iii) T is class -t operator if and only if its relaxation of T, fugimoreT), is? strongly - nonexpansive,

ie. llz — Tx||*> < |llz — x|I? —27\1 [lx — Tx||?,z € Fix(T) and x € H .
Lemma 2.11 [3] If a sequencex,} is fejer monotone with respect to a closed conmerempty subset C, then
the following hold.

() x, = x e C ifandonlyifw, c C;

(i) The sequenceR,x,} converges strongly to some pointin C;

(i) If x, =~ x €C,thenx =lim,_q P.x,.
Lemma 2.12[9] LetA: H — K be a given bounded linear operator &ndK — K be a classeoperator on

K. Assume that the equatigh — T)Ax =0 €)
has a nonempty solution set, then for each con8tanto < W, the operator:
Vi=1+ oA (T — DA (b)
is class < operator on H; moreover

Fix(V) = {xeH: Ax e Fix(T)} = A Y(Fix(T)). c) (

3. Main Results

Theorem 3.1 LetU; and V; be class 1 operators on real Hilbert space H for (i = 1, 2,.3p), suppose that
U; — I andV; — I are demiclosed at zero for every i = 1, 2, 3,.. Agsume that the solution s@tof problem
(1.9) (with r = p) is nonempty and let, Be a metric projection of H onf@ satisfying(x,, — x*, x,, — Pox,) <
0. Then the sequence{} define by

Xn+1= U[n] [xn+ }‘(V[n] Xn~ xn)]

converges strongly to a point € Q, where [n]:= n (mod p) with mod function taking walin the set

{1,2,3... p}, 1€ (0; 1) and x, € H is choosing arbitrarily.

Proof. To show thak,, — x*, it suffices to show that,, — x* and||x,|| - ||x*|| asn — .

As we are in Hilbert space, now, takinge Q and letlV;,, =1 + (V[n] - I), sinceV; ,, is% strongly quasi-
nonexpansive, we deduce from lemma 2.10 (iii) that

”xn+1 —-x" ”2 = ”U[n] [xn + A(V[n] - I)xn] —-x" ’
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18 Vanta — x|
2 2
—[|UmVan = Vaull

< ||V,1_nxn —x* 2

< ||V,1_nxn —x*

_ 2
<l = 27112 = Z2 Vit —

=17 = 252 (1 Vi = ) =

2
“;'Cn - x*”Z -A2- /1)||V[n]xn - xn” .
Thus{x,} is a Fejer monotone with respectt@nd

D Wiagn = < e

nz1

In particular, we have
[V = 2| = 0
It also follow from lemma 2.10 (iii) that
lxn 41 — 2,117 = ||U[n]V/1,nxn = VainXn + Vinxn — xn”2
< (1UpVantn = Vana || + [Vann = xall)”
Ut Vantn = Vanxall” + 2[Vanxa = xalllUgaVantn = Vanall + [Vann = xall’
< 2 (|UVandn = VanZall” + Vanin = xal|")
< 2([IVantn = 2°|° = 0paVamtn = 2°I° + It = %712 = [V = x°[|°)
= 2 (11 = 2112 = Vg Vot — x°||°)
< 2(llxn — %7117 = llxn4q — x711%)
= %41 = Xnll* < 2012, — %7112 = llxpsr — x711)

= s = 2l < 0

n>0
Now, letx* € w, (x,) and let an index € {1, 2, 3, ..., n} be fixed, noticing that the pool indexes is finike can

find a subsequende,, } of {x,} such thatx,, — x* ask — o, and[n,] = i for all k.

It turns out that

”Vixnk - xnk” = ”V[nk]xnk - xnk” =0, as k- .

By demiclosedness @¥; — I) at zero, we gek* € Fix(V;).

Setyp, = X, + AV — Dxy,, theny,, — x*, ask - oo, since”Vixnk - xnk” - 0, as k— oo,

it follows that
2

Pny =717 = N[, + AV = Dt ] = x°
2
”:Uiynk - X
2 2
S ”y“k -x7 = ”Uiymc - ynk”

< e = > "= WVaitn, = x|

*

2
[Vaidtn, = %n |

Z_ 22;1”(1 + (V[n] —1)) Xny, _xnk”z
‘oA V|| Vi, = xnk”2

2 2-2
< e, =2l =

”;"nk - X
”;'an —x

"< e =l < o, — 0

2

*

= ||xnk+1 —x

2
, moreover

Hencelimk_m”xnk — x*||? coinside with 1imk_>oo||ynk - x*
”Ul'ynk _Ynk”Z =< ”ynk —x i ”Uiynk —x 2: ”ynk —x i ”xnk+1 —x ’ -0, as k> oo.

Since(U; — I) is demiclosed at zeraje have x* € Fix(U;). Since this is true for every i, we get thaf, (x,,) c
Q. By lemma 2.11 we conclude that the sequer(ag) converges weakly to a point* € Q i.e.

X, = x* asn — oo, (3.1.2)

Next, we show that

llxxp Il = llx*]l asn — oo,

to show this,
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it suffices to show that
1411l = llx"]l as n — oco.
Now, since{x,, } is fejer monotone, we deduce that

Motneall = I N1? < Nxngr = 2° 117 < o — x*[12
Therefore, we have
Mxpsall = N1 < o, — |7
= gl = ™M1 < o — x| = |l — Poxn + Poxn — x°|
< 1%, = Paxy |1+ [Poxn, — x™ || (3.1.2)

Claim |[lx, — Poxy || < lIPox, — x|l
Proof of claim
”xn - Pﬂxnllz = ”xn —x"+x" = Pﬂxnllz
= |ley — 27|17 + 2(x, — x7, X" — Poxp) + |Ix* — Poaxy |I?
= ”xn - x*llz + 2<xn x5 x" = Xn t Xp — Pﬂxn) + ”x* - Pﬂxnllz
= ”xn - x*llz + Z(xn —x5x" - xn) +2(xn - X*,Xn - Pﬂxn) + ”x* - Pﬂxnllz
== |lxp, — x*||22+ 202ty — X%, % — Poxy) + [Ix* = Poxpll?
< llx™ — Poxpll

= |lx, — Paxpll? < |lx* — Pox,|l? (3.1.3)
Now, put (3.1.3) in (3.1.2), it follows that

Mxneall = XN < 2]1x7 = Poxy ||

= 0< limsupn—wol”xn+1” - ||X*”| limsupn—wo 2||X* - Pﬂxn” =0

= limsupy oo |l Xn 41 Il = X7l = 0.

Hence

1411l = llx7]l, as n— co. (3.1.4)
By (3.1.1) and (3.1.4), we have that

X, = x* as n- oo. [

Theorem 3.2 Let P> 1 and be an integer and f@t;}}_; and{T]-}z_; , be a family of class-operators on a real
j=1

Hilbert space H and K respectively. Suppose thd&F¥Z(1.5) with (r = p) has a nonempty solution(sahd let
P, be a metric projection of H ontQ satisfying(x,, — x*, x, — Pax,) < 0, suppose also for ea¢th< i < p,
(U; — I) and (T; — I) are both demiclosed. Then the sequengg flefine by
Xp41= U [xn + yA*(T[n] - I)xn] (3.2.2)
converges strongly to a point* € Q, where [n]:= n (mod p) with mod function taking wal in the set
{1,2,3,..,p},0<y < andx,e H is choosing arbitrarily.

1

Proof. Take 0 <o < E such that % <1 eg. (o= L ), set V,;,=1+cA"(T,—DA , for

14l
i=1,23,...,pand [n] = i.
By lemma 2.12V; is class ¢ operator. LeUp,,; = Upmoda py @AV = Viimod p)-
We can rewrite (3.2.1) as
Xn+1= Upn [0 + A(V[n] - I)xn]
where 1 :g € (0,1).
We next prove the demiclosedness (at zero) of peeator(V; — I) for everyi = 1,2,3, ..., p.
To see this, assume that,, — z and(I — V})z,, — 0 as n— .
Izn = Vizull = llzn — U + 0A™(T; = DA)z, ||
#oA"(T; — DAz, ||
HA*(T; — DAz, ||
= ||A*(T; — DAz, | = §II(1 —VDz,ll - 0. (3.2.2)
Now take & Q. SinceT; is class £ operator, we arrive at
I(T; — DAz 1> = ((T; — DAzy, (T; — DAz,)
& Az, — Aq + Aq — Az,, (T, —DAz,)
(i'iAZn - Aqr (Ti - I)Azn) + (Aq - Azn' (Ti - I)Azn)
(i'iAZn - Aqr (Ti - I)Azn) + (q - Zn'A*(Ti - I)Azn)
< <q - Zn'A*(Ti - I)AZn)
<llqg = zullllA*(T; — DAz, ||
< M||A*(T; — DAz, ||
where M is constant such thiity — z,,|| < M for all n. It turns out from (3.2.2) that:

lal?
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|(T; — DAz, || » 0,as n - oo.
However, the weak continuity of A yield thag,, — Az, which together with the demiclosednes{Tf— I) at
zero enables us to deduce that
Az = T;Az = Az € Fix(T;)
= z € A7Y(Fix(T)))
= z € Fix(V}).
This show thatV; — I) is demiclosed at zero for evary= 1, 2,3, ..., p.
Being generated by algorithm (3.2.1), the sequérgkis seen to converge strongly to a pairfite Q , by
virtue of Lemma 2.12 and Theorem 3.1.
Corollary 3.3

Let P> 1 and be an integer and {exi}f=1 and{T]-}j;l, be a family of class-operators on a real Hilbert space H

and K respectively. Suppose that MSSFP (1.2) with {§) has a nonempty solution seand let i be a metric
projection of H ontoQ satisfying (x,, — x*, x, — Pox,) <0, suppose also for each<i<p, (U;—
1) and (T; — I) are both demiclosed. Then the sequengg {lefine by

Xp41= Pc[n] [xn + yA* (PQ[n] - 1) xn] (3.3.2)

Converges strongly to a point® € Q. Where [n]:= n (mod p) with mod function takinglwa in the set

{1,2,3,..,p},0<y < W andx, € H is choosing arbitrarily.
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