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Abstract

Violations of Poisson assumptions usually resulbwerdispersion, where the variance of the modekeds the
value of the mean. Excess or (deficiency) of zeyonts result in overdispersion. Violations of edgpersion
indicate correlation in the data, which affect gmal errors of the parameter estimates. Modes fitlso affected.
(Hilbe 2008). Therefore, this study examined th@ant of outliers and excess zero on count datausiog
overdispersion. The study focus on identifying ni¢sJevhich can handle the impact of outliers ande=s zero
in count data. Datasets based on Poisson modelsivatgated for sample sizes 20, 50 and 100 andocated
with outliers and excess zero. Maximum likelihoostireation method was employed in estimating the
parameters. Model selection is based on dispeiniex, AIC, BIC and log likelihood statistics, gat into
consideration Poisson, Negative Binomial, Zeroataftl Poisson and Zero Inflated Negative Binomiatet®
and results obtained indicates that ZINB is the basdels for analyzing count data in the presericeudiers
and/or excess zero.

Keywords: Count data, Overdispersion, Excess zero, outli@ogndness of fit, Poisson, Negative Binomial and
Zero inflated models

1. Introduction

Not all overdispersion is real; apparent overdisjper can sometimes be identified and the model deteno
eliminate it. Apparent overdispersion occurs whenoan externally adjust the model to reduce thped&on
statistic closer to 1.0. It may occur because ofigsing explanatory/predictor variable(s), the detatain
outliers, the model requires an interaction ternpredictor needs to be transformed to another soaléhe

link function is misspecified (Hardin and Hilbe 200 When a real overdispersion in a model has been
determined; then we employed another count modahntan accommodate this problem.

For count data models considerable emphasis has fdaeed on analysis based on the assumption oéator
specification of the conditional mean, or on theuasption of correct specification of both the cdiodial mean

and conditional variance. i.e. EMX] =exp(X8)  V[yix|=expx’8) since E[){x] = V[jx]

This is a nonlinear generalization of the lineagression model. It is a special case of the clageperalized
linear models, widely used in statistics literatlEstimators for generalized linear models (GLMsincide with
maximum likelihood estimators if the specified dens in the linear exponential family (CamerordaFrivedi
2008). The purpose of GLMs, and the linear modes they generalize, is to specify the relationdigpveen
the observed response variable and some numbepwdriates. The outcome variable is viewed as a
realization from a random variable.

The study was aimed at examining the performanc®ofe count models and how adequately did eachImode
fit the data, base on dispersion indices, AIC, B Log likelihood statistics. It further checke thiasness of
each model in estimating the coefficient of thedprtors used for the simulation.

2. Methodology

Impact of outliers and excess zero on count data Wweth studied, by creating simulated data se2@i50 and
100 sample sizes. Outliers were introduced intogieerated data adding 5 to 5%, 10% and 15%, ridgpec
observation of yin the different data set generated, which hawnbrandomized and replicated 500 times each
for the respective selected sample sizes. Eachrooted data set entails a specific cause of tleedispersion
observed in the display of model output. We fintate a base Poisson data set consisting of thtmeeatly
distributed predictors as follows. Constant =51~ 0.3,4, = -0.6, ands; = 0.4 which are coefficients of the
predictors for sample size 20, 50 and 100. Poissdegative Binomial, Zero Inflated Poisson and Zkftated
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Negative Binomial were considered to test how walth of the model fits the selected data sets bawitliers
and excess zero. The models were compared basdidpmrsion index in order to examine the changesenia
the index when employed on the same set of data.

The basic count model is the Poisson regressionematiich is based on the Poisson distribution with
probability density function:

e_}“i/llyi

Pr(1;,y;) = " fory; =0,1,2,.. Q)
where it is assumed thaf(Y;) = A;; andA; = exp(xB) = exp(1 + 0.3x;; — 0.6x,; + 0.4x5;) Var(Y;) = 4;.
Thus, for the Poisson models(Y;) = Var(Y;). The restrictive condition that the mean must éthavariance
is often violated by overdispersed data (whereavené exceeds the mean). As a result of that Porssalel is
generally considered inappropriate for count datach are usually highly skewed and overdispers&gah{eron
and Trivedi 2008).

And the Negative binomial distribution functiongven as follows;

F(yi+%) 1 \Ve oqa; \Vi _

Pr(u, a,y) = F(yi+1)[‘(é) (1+ali) (1+a/1i) ’ Yi=012,.. 2
Here, the dispersion parameter- 0 andA; = E(Y;); and Var(Y;) = 4; + aA?. The Negative Binomial model
offers a practical solution to the overdispersioolyem. However it does not address the issue césxzeros
(Wang 2007). Lawal (2011) argued that the NegaBivemial (NB) model might be a suitable alternatieehe
Poisson model especially for overdispersed coutat. ddnis is because the NB model in this case waatmbunt
for the heterogeneity in the data by introducing tlispersion parametar The NB model (2) is equivalent to
the Poisson model (1) whenequals zero. The larger the valuecois, the more variability in the data. The
advantage of the NB model over the Poisson modeltbarefore be assessed by the significance otxthe
parameter (Lawal 2010).

Zero Inflated Poisson ZIP model has been consideyddambert (1992) as a mixture of a zero pointsreasd a

Poisson, while Heilborn (1989) similarly considéne Negative Binomial model case. Generally, fa #ero

Inflated models, the probability of observing aaeutcome equals the probability that an obsermatidn the

always zero group plus the probability that theepbation is not in that group times the probabitityat the

counting process produces a zero; Hilbe and Grée@@7). Therefore, the zero inflated probability sma
function has the form:

Y+ A -P)Pr(Y=0) ify;=0
pri) = | , 3
OD=Ua-pprr=y)  ifyi>0 )
For the ZIP therefore, the probability mass functias:
Y+A-Pe?  ify =0

Pr(u,yi) = At . 4)
U la-ws ifv=12.

such thad < ¢ < 1. Thus the above model incorporates extra zeras ttia original Poisson models in (1) in
which (¥ = 0). The mean and variance are respectively{y;) = 1;(1 —¢) andVar(¥;) = 4,1 -¢)(1 +
YA;)

The probability density function for a Zero Infldt&legative Binomial distribution ZINB is given by:

Y+ A - +ar) e if ;=0
(1 _ l,l)) F(yi+a_1) (tx/li)yi if v, >0

yilT(@™) (1+aa;)?ite !
with E(Y;) = 2;,(1 —v); and Var(Y;) = 4;(1 —y¥)(1 + a4; + pA;) where the parametdr and i depend on
the covariates angl > 0 is a scalar. Thus we have overdispersion whenstlegry) or« is greater than 0. The
equation above reduces to Negative Binomial mazgleivheny = 0 and to the ZIP whea = 0.

Pr(Y; =y) = (6)

The criteria for the assessment of the dispersidex was based on the criterion given by Hilbe 800 the
dispersion index is greater than 1.0 the model b&yverdispersed, if it is greater than 1.25 fodei® with
moderate number of observations, then the modeVvesdispersed and if it is equal to or greater thab for
models with large number of observation the modedlso overdispersed. Log-likelihood as well as Al
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BIC were computed for each model. The log-likeliio@lues were computed due to observagidior all the
count models. For the Poisson model, the comparfeht log likelihood function foy; is given by:

li =2+ yilog(A) — log(y:!) (6)
and of course, the log likelihood function for fReisson is the sum of these terms over a randorleaohsize
n,

l
== > L+ ) ylog) = ) log(y) @
i=1 i=1 i=1
Restricting ourselves to the component of the l&glihood functions therefore, we similarly haveetlog
likelihood function component far;, having the Negative Binomial (NB) distribution as

1 1 1
l; = logl (yi + Z) —logl'(y; + 1) — logT (Z) + y;log(ai;) — (yi + Z) log(1+ ak;) (8)

Considering the following indicator variables] and w2 wherew1 equals 1 when observed count is zero and
zero elsewhere. Similarlyw?2 equals 1 when observed counts aré and zero elsewhere. The use of these
indicators ensures that the maximization of the llkglihood functions are uniform across the ensemple
(Lawal 2010). Thus the indicator variables arerktias:

1 ify;=0 0 ify;=0
1 l andw?2 l
@ {0 elsewhere @ {1 elsewhere

Consequently, the log likelihood functions for aeagi observatioty; are estimated as follows for the ZIP and
ZINB models respectively in expressions in

li = wl x [log(¥ + (1 = P)exp(;))] + w2 X [log(1 — P) + y;log(A;) — log () — 4] )
L=wlxX[logly+Q-yp)A+ a/li)‘“_l)] + w2 X [log(1 —¢) + y;log(A;) + y;loga —
log(y:) — i + a™Dlog(1 + a;) + logl'(y; + ™) — logl'(a™)] (10)
And the AIC and BIC were defined respectively as
AIC = —2InL + 2k (11)
BIC = =2InL + kln(n) (12)

wherelnL is the overall likelihood and#t is the number of parameters of the model. Thesautae are from
Akaike (1974) and Schwarz (1978) respectively. Thterion for the goodness of fit base on AIC an€Bs
such that the lower the value of the statistic,lib&er fitting the model. While for log-likelihoadithe higher
the value of the statistics the better fitting thedel.

3. Discussion of Results

Result for the analysis of the four count modelssidered for this study were presented in Tablg&Qlbelow.
Table 1 present the dispersion indices for the famadels considered. Data set were analyzed atreliffe
Magnitude of outliers for three different samplees 20, 50 and 100. The dispersion indices of Negat
Binomial at 0% magnitude of outliers are closedtand considered the base for sample size 20 andisie
for sample size 100, it has the same values withsBo models. Meanwhile, Zero Inflated Negativedial
has the least dispersion indices that are closdr &b 4%/5%, 10% and 15%/16% magnitude of outléard
considered the best models for all the sample siged.
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Table 1: Effect of Outliers on Dispersion Indices for somMedels for Count Data

Magnitude Zero Inflated
. Zero Inflated .
Sample of Poisson Negative Poisson Negative
Size Quitlier(s) Binomial Binomial
0% 0.909625] 0.909627 0.85612 0.831659
5% 1.299387 1.124377 1.058237 1.028002
20 10% 1.815388 1.173248 1.104233 1.042887
15% 2.220315 1.198061] 1.127587 1.064943
0% 0.813319] 0.813323 0.796018 0.779435
50 4% 1.046438 1.046437 1.024172 1.002835
10% 1.265147 1.126917 1.079957 1.068824
16% 1.488154 1.115827 1.09208Y) 1.069329
0% 0.891563 0.891563] 0.882372 0.873368
100 5% 1.060416 1.060418 1.04948 1.038777
10% 1.377747 1.249834 1.18211 1.159268
15% 1.529250 1.195671 1.18334 1.17127

It still shows that Zero Inflated Negative Binomfits the data more adequately than the other nsodsé¢d.
Sample size 20 and 50 show absence of overdispeltsiesed on the criteria given by (Hilbe 2008). This
indicates that in the presence of outliers whichseaoverdispersion, Zero Inflated Negative Binonigabn
alternative model for analyzing the count data iafits the data more adequately than the otheretsodsed.

Table 2 Effect of Outliers on AIC Values for some Modéds Count Data

Magnitude Zero Zero Inflated

Sample of Poisson Negative Inflated Negative
Size Outlier(s) Binomial Poisson Binomial
0% 65.5987413 65.59874] 57.88864 57.88864

20 5% 72.1300147 71.91756] 63.11032 63.11032
10% 81.0298132 78.89772 67.0719 67.07032

15% 88.1388647 83.71242 75.47834 74.24234

0% 184.898991 184.899 | 175.2437 175.2437

50 4% 195.415266 195.4153] 185.1859 185.1859
10% 208.714849 208.3441 197.57%7 197.4791

16% 221.906444 219.4541 209.3426 207.8082

0% 362.385247 362.3853] 352.786 352.786
100 5% 380.89971 380.8997] 368.9704 368.9704
10% 412.16201 411.4715 401.5944 401.5042

15% 432.420494 428.0277| 419.9284 417.9078

Table 2 and 3 present the results for AIC and B¥gen five is added to certain percentages of thasess for
the four models. It can be seen clearly at 0% &n0(6% magnitude of outliers, Zero Inflated NegatBiaomial

and Zero Inflated Poisson models outperform therotlvo models having the smallest AIC and BIC valaad
are considered the best. At 10% and 15%/16% madmivfioutliers Zero Inflated Negative Binomial mbtas
the least values for AIC and BIC which was consideas the best model for all the sample size. Tiwere
ZINB fits the data adequately well followed by Ziér the selected samples, this shows that as tinpleasize
increases, the best models for analyzing countidgieesence of outlier is ZINB.
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Table 3: Effect of Outliers on BIC Values for some Modfds Count Data

Magnitude Zero Zero Inflated
Sample of Poisson Negative Inflated Negative
Size | Outlier(s) Binomial Poisson Binomial
0% 69.590206 69.5902])} 61.8801 61.8801

20 5% 76.121479 75.9090 67.10178 67.10178
10% 85.021278 82.8891 71.0633p 71.06178
15% 92.130329 87.7038 79.4694 78.2338

0% 190.72304 190.723] 181.0677 181.0677
50 4% 201.23931 201.239 191.01 191.01
10% 214.5389 214.168 203.399F 203.3032
16% 227.73049 225.278 215.166E 213.6322

0% 369.59559 369.595¢ 359.9963 359.9963

100 5% 388.11005 388.110) 376.1807 376.1807
10% 419.37235 418.681 408.80 408.7145
15% 439.63083 435.238 427.138y 425.1181

Table 4 present the log-likelihood values for thaerfcount models, where ZINB has the least valtd9% and
15%/16% magnitude of outliers for all sample slzdas the same values with ZIP at 0% and 4%/5%mnimade
of outliers for all the samples used for the study.

Table 4 Effect of Outliers on Log Likelihood Values foorme Models for Count Data

Magnitude Zero Zero Inflated
Sample of Poisson Negative Inflated Negative
Size | Outlier(s) Binomial Poisson Binomial
0% -31.79937064 -31.79937165 | -27.94432| -27.94432
20 5% -35.06500739 -34.95878022 | -30.55516] -30.55516

10% -39.51490659 -38.44885778 | -32.5359% -32.53516
15% -43.0694321] -40.85620988 | -36.7390] -36.12117

0% -91.4494953] -91.44949979 -86.62183] -86.62183
50 4% -96.70763324 -96.70763469 | -91.59297] -91.59297
10% -103.3574247% -103.172025 -97.78789% -97.73957
16% -109.953223] -108.727050 -103.67J1.3102.9041
0% -180.1926233 -180.1926276 | -175.393 -175.393
100 5% -189.449855] -189.4498584 | -183.4852] -183.4852

10% -205.081004% -204.7357409 | -199.797% -199.7521
15% -215.210247% -213.0138257 | -208.964%2 -207.9539

This study shows that the ZINB outperform the ottnexdels base on log-likelihood values followed bl . Zhis
implies that ZINB can fit the data well in the peese of outlier even if the sample size continuegancreased.

Table 5 show the bias in each of the count modeksstimating the parameters used to simulate thee .
Based on average performance Negative Binomiatheteast bias at most of the percentages of maimivf
outliers for sample size 20 and 100, while it hbsoat the same performance with Poisson model darpde
size 50.
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Table 5: Bias of Coefficient of the Predictors and the S&ant Term

Magnitude Zero Zero Inflated
Parameter§ Sample of Poisson | Negative Inflated Negative
Size Quitlier(s) Binomial Poisson Binomial
$1=0.3 20 0% 0.017873 0.017871 -0.06074 -0.06076
£,=0.3 20 5% -0.02795 -0.01341 -0.111 -0.11102
$1=0.3 20 10% -0.06709 -0.01891 -0.1998 -0.19801
$1=0.3 20 15% 0.155222  0.208619 0.05076 0.083411
S>=-0.6 20 0% -0.03639 -0.03639 -0.16631 -0.1663
S>=-0.6 20 5% -0.04697 -0.039 -0.18203 -0.18203
S>=-0.6 20 10% -0.03816 0.000261 -0.20185 -0.20231
S>=-0.6 20 15% -0.0935 -0.00832 -0.23989 -0.22971
$:=0.4 20 0% 0.002272 0.002271 0.212897 0.212861
$:=0.4 20 5% 0.007962 -0.00021 0.229297 0.229287
S:=0.4 20 10% 0.284976 0.231656 0.516835 0.514075
=04 20 15% | 0.191124 4,453 0387168  0.353873
p=1.0 20 0% 0.014217 0.014219 -0.12349 -0.12346
p=1.0 20 5% -0.09129 -0.09149 -0.23177 -0.23176
p=1.0 20 10% -0.25887 -0.26448 -0.39607 -0.39515
p=1.0 20 15% -0.30881 -0.33022 -0.44096 -0.42993
$:=0.3 50 0% 0.056844 0.056843  0.101167 0.101167
$1=0.3 50 4% 0.051205 0.051205 0.095763 0.095766
$1=0.3 50 10% 0.071222 0.070366 0.115094 0.115775
$1=0.3 50 16% 0.082109 0.085782 0.127113 0.13355
S>=-0.6 50 0% -0.06835 -0.06834 -0.13581 -0.1358
S>=-0.6 50 4% -0.07213 -0.07213 -0.13986 -0.13989
Bo=-0.6 50 10% -0.0652 -0.05789 -0.13276 -0.13127
S>=-0.6 50 16% -0.08492 -0.06508 -0.15477 -0.14818
S3=0.4 50 0% -0.02737 -0.02738 0.015981 0.015982
S3=0.4 50 4% -0.02012 -0.02012 0.023426 0.023434
S3=0.4 50 10% 0.02493 0.02816 0.06816 0.070359
S3=0.4 50 16% 0.041065 0.053538 0.085539 0.096626
p=1.0 50 0% -0.12725 -0.12724  -0.19667 -0.19668
p=1.0 50 4% -0.18213 -0.18213 -0.25174 -0.25173
p=1.0 50 10% -0.26467 -0.26343 -0.33403 -0.33395
p=1.0 50 16% -0.34665 -0.34464 -0.41734 -0.41767
£,=0.3 100 0% 0.018751 0.018751 0.05136 0.051297
£,=0.3 100 5% 0.075697 0.075696 0.111532 0.111516
£,=0.3 100 10% 0.059218 0.05525 0.117686 0.116046
£,=0.3 100 15% 0.072671 0.059415 0.136144 0.126337
S>=-0.6 100 0% -0.03727 -0.03727 -0.07068 -0.07065
S>=-0.6 100 5% -0.04403 -0.04403 -0.08119 -0.08118
£>=-0.6 100 10% -0.11215 -0.10744  -0.16952 -0.16711
£>=-0.6 100 15% -0.09346 -0.07722 -0.15911 -0.14374
$3=0.4 100 0% 0.066833 0.066833 0.081928 0.081936
$3=0.4 100 5% 0.078727 0.078727 0.095763 0.095768
$3=0.4 100 10% 0.123232 0.116181 0.147047 0.144468
f+=0.4 100 15% | 0.148301 1340668 0.175631  0.163087
u=1.0 100 0% -0.01067 -0.01067 -0.05167 -0.05175
u=1.0 100 5% -0.09753 -0.09753 -0.14152 -0.14151
pu=1.0 100 10% -0.20383 -0.20173  -0.27697 -0.27396
u=1.0 100 15% -0.26427 -0.25782 -0.34798 -0.33227
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In terms of biasness, Negative Binomial outperfoties other models, even though there are no sigmifi
differences in the comparison base on the magnitdiditliers present in the data set. This can hklsseen
clearly in Table 5 that shows the bias of eacthefrhodels in estimating the model parameters.

The four count models were also employed on thepkzsrincorporated with excess zero and the rebaked

on dispersion indices, AIC, BIC and log likelihoagtre presented in Tables 6 - 10 respectively. Arghn be
notice that in Table 6 when Negative Binomial wagpiyed the dispersion indices decreases slightlecto 1,

it further dropped closer to 1 when ZIP and ZINBrevemployed. From the result of this Table Negative
Binomial has the closest dispersion indices to doaistant 1.0 and considered the best for sampée2§) and
50, while Poisson model has the least dispersidités closer to 1 and considered the best fordhgpke size
100 at constant 1.0. ZIP outperform other modelsngadispersion indices closest to 1 for sample &2 and
50 at constant 0.5 and considered the best modekdmple size 100 ZINB outperform other modelsoaistant
0.5 and 0.2 and still considered the best at cahét2 for sample size 20 and 50.

Table 6: Effect of Excess Zero on Dispersion Indices fume Models for Count Data

Zero Zero Inflated
Sample] Constant] Poisson | Negative | Inflated Negative
Size Binomial Poisson Binomial

1.0 9096259 .9096272| 0.856119f 0.808558

0.5 1.038109 1.038107| 0.977041p 0.922762
20 0.2 1.246094 1.246091| 1.172791p 1.107636
1.0 .8133193 .8133235| 0.796018f 0.779435
0.5 1.013669 1.013668| 0.992100p 0.971432
50 0.2 1.418684 1.247437| 1.171063p 1.103502
1.0 .891563q .8915633| 0.882371p 0.873368
100 0.5 1.360607] 1.21868 | 1.169932% 1.083271

0.2 1.196869 1.132696| 1.087388fF 1.035608

One can also notice from these results that thedispersion was taking care base on the underlyiitgria by
(Hilbe 2008). AIC values were presented in Tablehére the values decrease with increase in magnibiid
zeros for the four selected count models. ZINB ZHe has the least AIC values for sample size 20 0@ at
constant 1.0, 0.5 and 0.2 and considered the badtimWhile for sample size 50, the two models hfieesame
least AIC values at constant 1.0 and 0.5, but ZtNiBerform the other models at constant 0.2 andidered
the best. This implies that ZINB fits the data madequately than other models.

Table 7: Effect of Excess Zero on AIC Values for some Mesder Count Data

Zero Zero Inflated
Sample Negative| Inflated Negative
Size | Constant] Poisson | Binomial Poisson Binomial
1.0 65.5987413 65.5987H 57.88864 57.88864
20 0.5 60.0285349 60.02898 54.90542 54.90542

0.2 54.029893q 54.0299 48.28804 48.28804
1.0 184.89899]] 184.899 175.2437 175.2437

50 0.5 163.8083 163.808B 163.6985 163.6985
0.2 158.0123694 157.58§3 156.9974 156.1711
1.0 362.385247 362.3853 352.786 352.786
100 0.5 325.306069 324.6847 319.824 319.824

0.2 269.988107 269.800p 262.3872 262.3872

The BIC values presented in Table 8 decreased ingtiease in magnitude of zeros for the four countiats
used for this study. ZINB and ZIP have the least Balues for sample size 20 and 100 at constan150and
0.2 and considered the best model. While for sarmsigke 50, the two models have the same least Bl@sat
constant 1.0 and 0.5, but ZINB outperform the othmdels at constant 0.2 and considered the bes. Th
indicates that ZINB is the best models for analgziount data having excess zero.
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Table 8 Effect of Excess Zero on BIC Values for some Meder Count Data

Zero Zero Inflated

Sample Negative| Inflated Negative
Size | Constant] Poisson Binomial Poisson Binomial
1.0 69.590206] 69.5902)L 61.8801 61.8801

0.5 64.019999 64.020Q 58.89688 58.89688

20 0.2 58.021358] 58.0213p 52.2795 52.2795
1.0 190.72304 190.723 181.0677 181.0677

0.5 169.63235 169.632B 169.5225 169.5225

50 0.2 163.83641 163.412¢ 162.8215 161.9951
1.0 369.59559] 369.595b 359.9963 359.9963

0.5 332.51641 331.893 327.0343 327.0343

100 | g2 | 277.19845| 277.010b 269.5075| 2695975

Table 9 shows the log likelihood values for therfoaunt models considered. ZIP and ZINB have tlyhént
log likelihood values at constant 1.0, 0.5 and for2zsample size 20 and 100 which were consideredbtrst

models.

Table 9 Effect of Excess Zero on Log likelihood values $ome Models for Count Data

Zero Zero Inflated
Sample Negative Inflated Negative
Size | Constant] Poisson Binomial Poisson Binomial
1.0 -31.79937069 -31.79937145-27.94432 -27.94432
20 0.5 -29.01426744 -29.01426735-26.45271 -26.45271
0.2 -26.0149468 -26.014948| -23.14402 -23.14402
1.0 -91.4494953] -91.44949979-86.62183 -86.62183
50 0.5 -80.90415004 -80.90415139-80.84925 -80.84925
0.2 -78.0061824 -77.79416546-77.49872) -77.08555
1.0 -180.1926233 -180.19262]6-175.393 -175.393
100 0.5 -161.653033] -161.34233%2-158.912 -158.912
0.2 -133.9940539 -133.9000798-130.1936 -130.1936

The ZINB also has the highest log-likelihood val@essample size 50 at constant 0.2. Meanwhiledtrtains
the same highest values with ZIP at constant 1d00af and considered the best models for the sample size
50. This indicates that the ZINB outperform theestiodels in analyzing count data with excess zero.
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Table 10 Bias of Coefficients of the Predictors and then§&ant Term (Excess Zero)

Zero Zero Inflated
Parameters Sgggle Constant Poisson giengc])?rtwli\:;(l3 IFE]cf)lizlec;jn giengc])?rtwli\:;(l3
$=0.3 20 1.0 0.017873 0.017871 -0.06074 -0.06076
$1=0.3 20 0.5 -0.07283  -0.07283 0.043609 0.043603
$1=0.3 20 0.2 -0.01202 -0.01202 0.123124 0.123112
So=-0.6 20 1.0 -0.03639  -0.03639 -0.16631 -0.1663
Bo=-0.6 20 0.5 0.154509 0.15451  -0.00121 -0.00115
S=-0.6 20 0.2 0.001201 0.001206 -0.12533 -0.12534
p:=0.4 20 1.0 0.002272 0.002271 0.212897 0.212861
B:=0.4 20 0.5 0.066403 0.066403 0.045691 0.045676
p:=0.4 20 0.2 -0.02463  -0.02463 0.049864 0.049781
p=1.0 20 1.0 0.014217 0.014219 -0.12349 -0.12346
pu=0.5 20 0.5 0.3278 0.3278 0.054334 0.054409
pu=0.2 20 0.2 -0.02497  -0.02497 -0.25094 -0.25087
$1=0.3 50 1.0 0.056844 0.056843 0.101167 0.101167
$1=0.3 50 0.5 -0.0721 -0.0721 -0.05934 -0.03097
$1=0.3 50 0.2 -0.01228 -0.00852 -0.12168 0.2177
S=-0.6 50 1.0 -0.06835 -0.06834 -0.13581 -0.1358
S=-0.6 50 0.5 -0.02612 -0.02612 -0.03486 -0.03486
S=-0.6 50 0.2 0.042066 0.03812 -0.11776 -0.5072
p:=0.4 50 1.0 -0.02737  -0.02738 0.015981 0.015982
p:=0.4 50 0.5 -0.00746  -0.00746 0.007974 0.007968
S:=0.4 50 0.2 -0.00349 0.005735 0.202991 0.371622
p=1.0 50 1.0 -0.12725 -0.12724 -0.19667 -0.19668
pu=0.5 50 0.5 -0.01429 -0.01429 -0.04531 -0.0453
pu=0.2 50 0.2 0.004478 0.001025 -0.17213 -0.39213
$1=0.3 100 1.0 0.018751 0.018751 0.05136 0.051297
$1=0.3 100 0.5 -0.02259 -0.02588 0.035889 0.035891
$=0.3 100 0.2 -0.0155 -0.01542 -0.03097 -0.0213
S>=-0.6 100 1.0 -0.03727 -0.03727 -0.07068 -0.07065
Bo=-0.6 100 0.5 -0.06216 -0.07164 -0.01684 -0.01678
B>=-0.6 100 0.2 0.129651 0.1243260.074513 0.074523
p:=0.4 100 1.0 0.066833 0.066833 0.081928 0.081936
B:=0.4 100 0.5 -0.03406  -0.02757 -0.00941 -0.00945
S:=0.4 100 0.2 0.036406 0.033128 -0.04842 -0.04841
u=1.0 100 1.0 -0.01067 -0.01067 -0.05167 -0.05175
pu=0.5 100 0.5 0.064403 0.061059 -0.01009 -0.01002
pu=0.2 100 0.2 0.122264 0.1209950.042923 0.04294

Table 10 shows the biasness of the four count nsadelerms of estimating the parameters used imlaiing

the dataset. Negative Binomial model outperforneptiodels in estimating some of the model paramédter
sample sizes used followed by Poisson model. How&ildB and ZIP models were considered the best in
estimating few parameters for sample size 20 artid The amount of biasness fluctuates with incréagbe
magnitude of excess zero for all the sample size.
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4. Conclusion

In conclusion, we found from our study that, thepéirsion indices increases with increase in Madaitof
outliers and excess zero in the datasets considerall the sample sizes. When ZINB was employadie
same data set the indices dropped closer to 1 whitibates that the model fits the data more adety#han
the other models in terms of accommodating the Iprobof overdispersion. However, when sample size
increased the dispersion indices decreases inadinMude of outliers. The AIC and BIC statisticsZéfB were
the least for the analysis, followed by ZIP and &teg Binomial respectively. The statistics serlpuscreases
as the sample size increased. While the AIC and\BllGes decreases with increase in the magnitudscess
zeros. ZINB has the highest values of log likeliti@batistics and the statistics increases witheimse in sample
sizes. Negative Binomial and Poisson models fit dla¢éa wells in terms of biasness for some paramseter
meanwhile ZINB outperform other models in the remrag parameters. The amount of biasness decreages w
increase in the magnitude of excess zero. Theseaiiecthat ZINB is the best models for analyzingritadata in
the presence of outliers and/or excess zero.

This study despite that it is time consuming, h&pplied appropriately it will assist research&rsinderstand
what proportion of outliers or excess zero may eaesious overdispersion to their work. This mayeghem a
kind of an overview of their study. Most real lfeunt data exhibit excessive zero, therefore, gbinthis study
as well Zero Inflated Negative Binomial model cam Use to analyze any count data more especiallisif
distribution pattern cannot be identify. Finalletstudy can also be extended further on very laageple to
investigate the performance of these models irpthsence of outliers and/or excess zero.
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