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Abstract. With the continuing absence of HIV/AIDS cure, the current use of HAART (Highly Active Antiretroviral 

Therapy) has remained the only feasible control measure. Although it does not eradicate the disease completely, it 

maintains low viral load helping reduce infectivity of exposed individuals. The time lag between the cause (action of HIV 

virus) and the effect (reaction of the immune system) leads to periodic solutions representing oscillatory cell populations. In 

this paper we analyze a mathematical model that describes the dynamics of the immune system and a drug sensitive wild-

type HIV variant. We study the transient and steady state behaviour of the model to assess the effects of time delay on the 

stability of periodic oscillations. The periodic solutions are stable if the value of time lag is within critical bounds, say 

[ , ]min max   . Using  as a bifurcation parameter, the solutions become unstable when min  . Drug efficacy is 

achieved at a critical value of time delay which leads to oscillator death of periodic solutions. The value of this parameter 

once determined, help in the management and control of the HIV pandemic through therapeutic intervention. Although 

parameter estimation which depends on the dynamics of viral and immune system interaction is highly individualistic, the 

bounds of time delay and minimum efficacy of the concoction will capture diverse reaction of many patients. 

 

Keywords: Equilibrium, Basic reproductive number, Stability. 

 

1. Introduction 

Since HIV pandemic first became visible, enormous research on how to control the epidemic in terms of prevention of 

transmission and treatment has been conducted. Mathematical modeling helps in understanding the dynamics of infectious 

diseases. The use of mathematical model results, lesser clinical experiments is required in research and valuable 

information on the dynamics of pathogens is obtained helping in designing a more effective regimen. With the continued 

absence of HIV/AIDS cure, the use of the current combination of ARV’s and vaccines have not been effective because of 

inadequate understanding of the basic principles underlying the interaction of the immune system in response to diverse set 

of pathogens.  

  Many mathematical models of HIV infection, notable among them is that of Perelson [2], Kirschner [3], and DeBoer, [14] 

studies the interactions between healthy T cells, actively infected T-cells, latently infected T-cells and free virus in the 

bloodstream. Their utility lies in the ability to predict an infected steady state. The models are used in examining the effects 
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that changes in parameters have on the outcome of the system over time, to determine which parameters are most important 

in disease progression, and further determine critical threshold values for these parameters. Second, treatment strategies can 

theoretically be simulated, allowing the design of clinical trials to be streamlined. This paper shows how parameter 

estimation and drug toxicity affects the efficiency of the mathematical model. 

This is how the paper is arranged. Section 2 is the literature review, in section 3 we develop a model, and examine 

equilibrium points and the effect of delay  on their stabilities and CTL response in presence of treatment. We obtain 

theoretical results showing minimum bounds of periodic drug supply and bounds of time lag required for effective control 

of HIV. In the last section we show numerical results, give a summary and a conclusion. 

2. Literature Review 

Various biological reasons lead to the introduction of time delays in models of disease transmission. Time delays are used 

to model the mechanisms in the disease dynamics (see for instance [12], [10]). The following several different biological 

mechanisms have been modeled by the introduction of time delays in epidemiological models: (i) Delay due to temporary 

immunity; which can be attained through immunization; naturally or in some cases maternal antibodies can be transmitted 

to a new born providing a certain level of immunity. In each case, the immunity period will vary, as some diseases provide 

almost life-long immunity while others give only a very short-lived non-susceptibility.  Kyrychko and Blyuss (2005) [7] 

and Blyuss and Kyrychko (2010) [8] considered delay models with fixed immune period and varying immune period. It 

was proved that the disease-free equilibrium is locally stable and under some conditions, the endemic equilibrium is 

globally asymptotically stable. (ii) Delay caused by the latency in a vector; e.g. in the case of diseases like Malaria, Dengue 

fever and yellow fever, Trypanosomiasis and Bubonic plague, just to mention by a few, and (iii) Delay caused by latent 

period in host; The latent period is the time elapsed between exposure of a host to a pathogens, and the time of 

infectiousness of this host. Inclusion of time delay means that the models can be formulated as functional differential 

equations. One important aim is to investigate the effect of time delays on global properties of models. Lyapunov-LaSalle 

type theorem for delay differential equations Kuang [15] (1993) provides a useful method to establish global stability by 

suitable Lyapunov functional. Huang et al. [5] (2010) have considered two epidemiological models with the last two case 

delays and nonlinear incidence rate. A. S. Perelson et al [2], modeled HIV-1 infection that include intracellular delays and 

analyzed the effects of delays, combination antiretroviral therapy, and the dynamics of both infected and uninfected T cells. 

They showed that when the drug efficacy is less than perfect the estimated value of the loss rate of productively infected T 

cells is increased when data is fit with delay models, as compared to the values estimated with a non-delay model. D. 

Krischner and G. F. Webb [4] formulated a model to study treatment strategy in the chemotherapy of AIDS using AZT. 

They studied the role of treatment to perturb the system from progression to AIDS back to latency. They simulated 

treatment schedules for the consideration of treatment regimes. The following issues of chemotherapy were addressed; (i) 

daily frequency of treatment, (ii) early verses late initiation of treatment and (iii) intermittent treatment. The simulation 

suggested that (i) the daily period of treatment does not affect the outcome of the treatment, (ii) treatment should not begin 

until after the final decline of T cells begins and (iii) a possible strategy for treatment which may cope with side effects 

and/or resistance is to treat intermittently with chemotherapy followed by interruptions in the treatment during which a 

different drug or no treatment is administered. 

  Jonathan Erwin Forde [6] studied Delay Differential Equation Models in Mathematical Biology and showed that varying 

the delay length can change the stability characteristics of a steady state. So, the length of the delay acts as a bifurcation 

parameter. Anti Retrovirals (ARV’s) have been known to reduce the amount of human immunodeficiency virus type 1 in 
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the blood plasma of infected patients to extremely low undetectable levels (see for instance [13], [9], and [1]). However, a 

small percentage of infected patients experience viral rebound [13]. This could be associated with periodicity in viral load 

due to the time delay during interaction [16] and in an attempt to maintain a low viral load of HIV virus, in this paper we 

study the periodicity of viral levels and determine the parameters necessary to control the periodic behaviour of the cells.  

  A biological model is formulated to describe the interaction of HIV retro viruses, the immune system and concentrations 

of therapeutic drugs in the human body. The model is used to analyze the virologic effect of drugs on HIV viral load and to 

establish immunologic effects of periodic supply of therapeutic drugs on CD4+ T cells. This involves the interaction of 

three groups of cells; CD4+T cells, virions and CTL cells in presence of antiretroviral drugs. Here, multiple delays  are 

used to account for the time between viral entry into the target cell and the production of new virus particles and  is used 

to model the time during which the target cell continue being productive, with . 

3 Theoretical Analysis 

3.1 Treatment and CTL Model 

In order to assess the dynamics of the viral and immune system interactions in an ideal situation, the effect of drugs and 

CTL response is incorporated onto the viral interaction with the CD4+T-cells. The HAART drug efficacy of the 

combination therapy against virus is defined to be .   is allowed to be a function of time for the sake of assessing 

periodic supply of chemotherapy. In order to mimic the effect of drugs and the immune system response on the dynamics 

of HIV virus, parameters measuring drug efficacy and CTL action are incorporated. The following variables and 

parameters are defined, to be used in the next model.   

Definition of Variables: 

T(t) the sum total of Naive T cells,  1( )T t  Infected and unproductive non-infectious CD4+T cells, 2 ( )T t  Population of 

productive CD4+T cells infected by virus type 1 and V(t) Population of infectious HIV-1 virus; 

Definition of Parameters: 

(i) s represents the constant rate of production of uninfected CD4+T-cells. 

(ii)  r is the maximum rate of proliferation of CD4T-Cells due to the presence of antigen, with a maximum uninfected 

CD4+T-cell concentration of maxT . 

(iii)   is the rate at which CD4+T cells are infected by the virus. 

(iv) N is the constant rate at which new virions are produced during cell burst. 

(v) (1 )  is the proportion of virus which remain faithful during transcription to the original wild strain and is the 

complimentary proportion of virus which significantly mutate. 

(vi) µ is the natural death rates of the i
th

 class, i = 1 2( ), ( ), ( )T t T t T t  and ( )V t . 

(vii)   and  is the constant time lag modeling latent period and infective period respectively. 

(viii) h is the CTL induced death rate of infected T cells. 

(ix) ( )tò time dependent periodic drug efficacy. 

(x) a models the effectiveness of CTL in reducing the viral infectivity of naive CD4+T cells. 

(xi) b is the effectiveness of CTL in reducing the virus burst size. 

Model assumptions 
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In order to have explicit dynamical relations we make the following model assumptions: 

A1 The model assumes that there is cell mediated response and no hormonal immune response. 

A2 The model does not distinguish infection by different viral strains. 

A3 Any uninfected cell once infected will remain infected forever. 

A4 Only CD4+T cells are infected and up on infection, cells become latent for some fixed time then become productive for 

time     units. 

A5 There are only four interacting cell species 1 2( ), ( ), ( )T t T t T t  and ( )V t . 

A6 Mass action principle, where interaction is assumed to be a function of interacting populations is employed or in 

proportion to the product of abundances of T cells and viral load. 

3.2. Model Equations 

The definition of parameters result in the following Model Equations, 

(1 ) (1 )(1 ( )) a

T

dT T
s rT t e TV T

dt K
        ò  

1
1(1 )(1 ( )) (1 )(1 ( )) ( ) ( ) ( )Ta a T

dT
t e TV t e T t V t e h

dt

                ò ò  (1) 

2
2 2(1 )(1 ( )) ( ) ( ) (1 )(1 ( )) ) ( )( ( )T Ta adT

t e T t V t e t e T t V t e h
dt

T
                       ò ò  

1( )
(1 )(1 ( )) ( ) ( ) ( )

b

v

dV
t N T t V t V t e V

dt

       
      ò  

3.3. Model Description 

The model is briefly explained as follows. The first term of the first equation of system (1) represents a constant source of 

new uninfected CD4+ T-cells from the Thymus. The next term represents a logistic growth rate of CD4 cells with a 

carrying capacity of maxK T , this is then followed by a term which represents the infection of CD4+ T-cells by the virus 

and is determined by the rate of encounters of CD4+ cells by the virus. This is based on the law of mass action with   as 

the probability of infection and (1 ( ))tò  measuring the proportion of infectious viruses that eludes the effect of 

combination therapy and   the proportion of HIV mutant strain that cannot be prevented by HAART. The term 
ae

 

represents the effectiveness of CTL to prevent infectivity. The last term T  is the natural death rate. The second equation 

models the population of latently infected unproductive CD4+ T-cells with an exposure latent period of 0   before they 

become productive. The probability that the infected cell survive until it becomes active and produce viruses after time 

0  (incubation period) is given by Te
 

. The last term 1  represents the natural death rate augmented by the 

accelerated death rate due to the action of CTL given by h. The third equation of system (1) models the rate of change of 

actively infected CD4+ cells with the probability Te
 

 that they continue surviving and actively producing viruses for 

time 0  . The last term also represents augmented natural death rate due to the action of CTL. The last equation of (1) 

models the population of free virus in the blood plasma. It is assumed that only actively infected CD4 cells produce viruses 
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at a rate N per cell over the entire life time of the cell
1


with    representing the total time of latency and infectivity 

(production of virus). The equation monitoring the rate of change of HIV specific CTL population is not included. Here it is 

assumed that the first equation captures the total T-helper cells which later differentiate into CD4+T-cells, HIV specific 

CD8+T-cells and memory cells. 

3.4 Model Preliminary Analysis 

Some basic properties of solutions to the system (1) are first established. These include positivity, boundedness of solutions 

and stability of steady states.  

Initial Conditions 

The initial conditions for the system (1) at time t= 0 are 

0 1 10 2 20 0(0) 0,    (0) 0,    (0) 0,    (0) 0T T T T T T V V            (2) 

A positive quadrant is defined in the following as, 

 and 

      (3) 

It is then shown that the variables in model (1) are non negative for all time t > 0 and  proven that all solutions with positive 

initial data as defined in (2) will remain positive for all time t > 0 and are bounded. 

3.5 Positivity and Boundedness of Solutions 

Model (1) describes human cell population and therefore it is very important to prove that all the state variables  

1 2( ),  ( ),  ( )T t T t T t  and  ( )V t  are non-negative for all time t . It is proven that all solutions of system (1) with positive 

initial data will remain positive for all time 0t  and are bounded in . 

Theorem 3.1 Let the initial data be 0 1 10 2 20 0( ) ( ) 0,  ( ) ( ) 0,  ( ) ( ) 0,  ( ) ( ) 0T s T s T s T s T s T s V s V s         with 

0 10 20( ) 0,  ( ) 0,  ( ) 0T s T s T s    and 10( ) 0,   [ ,0)V s s     with 0 10 20(0) 0,  (0) 0,  (0) 0T T T    and 

0(0) 0V  . Then the solutions  and   of system (1) are positive for all 0t  . For the model system 

(1), the region  is positively invariant and all solutions starting in  approach enter or stay in  

Proof. First, it is proven that T(t) is positive for 0t  . Assuming the contrary and letting 1 0t 
 
be the first time such that 

 (  )   , by the first equation of system (1), we have 
'

1( ) 0T t s  , and hence T(t) < 0 for 1 1( , )t t t  and 

sufficiently small 0  . This contradicts the assumption that T(t) > 0 for all 1[0, )t t . It follows that T(t) > 0 for all t > 

0 as long as T(t) exists. Secondly, from equation (2) of system (1), 1( ) 0h    

and thus; 
1

1 1

( )
( ) ( ) (1 )(1 ) ( ) ( ) (1 )(1 ) ( ) ( ) ,Ta adT t

h T t e T t V t e T t V t e
dt

                  ò ò  

and given a bounded positive initial history on an interval [ ,  ]a a , 

1 1( ) ( )( )

1 1( ) ( ) ( (1 ) (1 ) ) .T
a

hC a hC a saC aC

rt rt
a

T a e T a n e TV n e T V e e ds
   

     


           
ò

ò
  

1 2( ),  ( ),  ( )T t T t T t ( )V t
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The right hand side of the last expression is positive and definite for [0,  ]ò , since the integrand is also bounded. This 

result can be iterated to show that 1( )T t is positive and finite for t a   . Using the same argument, it can be shown that 

the third and fourth equation of (1) is positive and finite. 

Boundedness 

Its next shown that positive solutions of (1) are ultimately uniformly bounded for 0t  . From the first equation of system 

(1), the following is obtained; 

' ( )
( ) ( ) 1 ( )( ) T

max

T t
T t s rT t T t

T
     and sulim p ( ) .

t T

s
T t



  

Define X(t):=T(t)+T_1(t)  then 
' ( )
( ) ( ) 1 ( )( )

max

T t
X t s rT t X t

T
     where 1{ , },Tmin h    thus 

supim )l ( .
t

s
X t



  Also let Y(t):=T(t)+T_1(t)+T_2(t) , then 
' ( )

ˆ( ) ( ) 1 ( )( )
max

T t
Y t s rT t Y t

T
     with  

1 2
ˆ { ,  , }Tmin h h      .  Therefore,  supim ( ) .

ˆ
l

t

s
Y t



  

Similarly, adding all equations of system (1), the following is obtained;  

' ( )
( ) ( ) 1 ( )( )

max

T t
Z t s rT t Z t

T
    , where 

( )

1 2

( )
( ) : ( ) ( ) ( )

b aV t e
Z t T t T t T t

N



     and 

1 2{ ,  ,  ,  }T vmin h h        and supim )l ( .
t

s
Z t



  Therefore, 1 2T(t),T (t), T (t)  and V(t)  are ultimately 

uniformly bounded in . 

3.6 Basic Reproductive Number 

The Basic Reproductive Number 0R  is defined as the expected number of secondary infections arising from a single 

individual during his or her entire infectious period, in a population of purely susceptible individuals. In our context, 0R  is 

defined as the number of secondary infectious HIV viral particles produced by one virus introduced into the blood system 

of uninfected individual with purely naive and susceptible population of CD4+T cells. This number is a measure of the 

potential for disease spread within a population. This concept is fundamental to the study of epidemiology and within-host 

pathogen dynamics since it serves as a threshold parameter that predicts whether an infection will spread or not. From this 

definition, it is immediately clear that when 0R 1 , each infected cell produces, on average, less than one new infected 

cell failing to replace themselves, and we therefore interpret to mean that the infection will be cleared from the population. 

If, on the other hand, 0R 1 , the number of infected cells will increase with each generation and the pathogen is able to 

invade the susceptible cell population. In the study of   , we can determine which parameters and at what magnitude that 

they contribute in reducing 0R below one, providing important guidance for public health initiatives [12]. We compute the 

basic reproductive number, 0R  following the next-generation operator approach by Dickmann et al., 1990 [11], Van den 

Driesche and Watmough, 2002 [12]. Using this approach,  0R  is obtained as 
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1

0 ( )R FV            (4) 

where the matrix 
1FV 

is referred to as the next generation matrix for the system at the disease-free equilibrium and 

( )A  denotes the spectral radius of a matrix A computed using the Euclidian norm.  

3.6.1 Disease Free Equilibrium (DFE) 

The DFE of system (1) is given by 
0 0 0 0 0 0

1 2{( ,  ,  ,  ) |  ( , 0, 0, 0}E T T T V T  where  

 

2 2
0

2

( ) ( )1 4
:

2
{ }T TK r K r sK

T
r r r

  
    

The reproductive number 0R TC  is computed as defined in (4) and the following is obtained; 

1( )0

0

(1 )(1 ( ))
.

b

TC

v

t N T e
R

  



 
 


ò

        (5) 

Note that in absence of treatment that is ( ) 0,t ò  the basic reproductive number in (5) reduces 

Figure 3.1 Comparison of values of Reproductive numbers 

Source:  Author 

to   
1( )0

0

(1 )
b

C

v

N T e
R

  



 


          (6) 

and in absence of CTL response b = a = 0 , the basic reproductive number reduces to 

10

0

(1 )

v

N T e
R

  






          (7) 

The basic reproductive number 0CR  in (6) incorporate the effect of HIV specific CTL response to the infection and 0R  in 

(7), it measures the reproductive number without any intervention of viral reproduction. By comparison the three 

reproductive ratios satisfy the inequality 0 0 0   T CR R R  . This clearly shows that therapy and presence of HIV 

suppressive factors produced by CTL control the viral load during HIV infection. Other factors like the presence of HIV 

drug resistant mutant strain   is mathematically seen to increase the value of 0R . Define 
10

0 :
v

N T e
R

 









 , then it is 

clear that 0 0R R   for all (0,1)  . Therefore, the inequality 0 0 0 0     T CR R R R     is satisfied. 
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3.7  Stability 

Stability of this system is determined by examining the sign of the dominant eigenvalue of the linearization of the model 

equations about the equilibrium point and since      is the dominant eigen-value, we summarize stability with the 

following Theorem whose proof can be easily provided. 

Theorem 3.2 If 
0 1R  , then 

0E is the only equilibrium in  and it is globally asymptotically stable. Here the Viral 

clearance is achieved. If 
0 1R  , then is unstable and there exist an endemic equilibrium, say 

eE  where the patient 

remains as an asymptotic carrier. 

Following this theorem, the attention focuses on to the stability parameter R0 and the parameters that affect its value are 

established. Notable among them is the drug efficacy and time delay. Time delay is known to destabilize once stable 

equilibrium [16] and since time delays are inevitable in life, the delay 0   is used as a bifurcation parameter and the 

stability of the Disease Free Equilibrium Point (DFE) E
0
 investigated when  is varied. Of importance is any critical 

values of  at which the basic reproductive number of equation (1) transitions from being less than one to being 

greater than one. If this is to occur, there must be a critical value of , such that the Reproductive number 0R is less 

than unity. At the onset of infection, the virus population shoots to a very high value then drops. Meanwhile, the CD4+T-

cells drops then begin to increase as illustrated in Figure 3.2 (a) below. With a small delay, the course become periodic as 

depicted in Figure 3.2 (b). 

 

 

Fig. 3.2(a) Plasma concentration of CD4+ T cells, CTL and HIV Virus and Fig. 3.1(b) Cell population in the Blood 

Plasma showing periodic oscillations in the course of time. 

Source: Fig 3.1(a). Z. H. Zhou, B.V.V Prasad, J. Jakana, F.R. Rixon, W. Chiu Baylor College of Medicine, Journal of 

Molecular Biology 

0E

0 

0 

0 
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The analysis of the value of 0R for various values of  and drug efficacy ε > 0 is given in Figure 3.3. We can clearly 

see that the determination of critical delay depends on the value of drug efficacy. For example, at   

Fig. 3.3 Values of 0R for various values of drug efficacy òand delay  . 

Source: Author 

 

0.75,ò the time delay must be greater than 30 hours for the reproductive number to be less than one. 

 3.8 Periodic Supply of Therapeutic drugs 

As stated earlier, drug efficacy ( ) [0 1  ]t ò  is periodic rendering the basic reproductive number to be periodic as well. Of 

interest is the bound of the parameter ( )tò which guarantees stability. 

 

 

Fig.3.4  Drug Concentration in Blood Plasma C showing periodic intake at multiples of time. 

Source: Author 

With periodic intake of drugs and the effect of decay, the concentration of drugs in the blood plasma is periodic as depicted 

in Figure 3.4. where it is assumed that the drugs are taken after every L time units and the concentration fluctuates with 

amplitude of b from an average concentration which stabilizes at c. 

If one lets ( )D t represent the periodic input concentration, then; 

0 
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,      0 1

( ) ,      1 2

,       2

c b if t t

t c b if t t t

c b if t t L

  

   

  







ò         (8) 

The period L is in hours. The concentration  ( ) can be represented in Fourier series of the form, 

0

1

2 2
( ) cos si n ,( )n n

n

n t n t
t a a b

L L

 



  ò       (9) 

Where an  and bn  are the Fourier coefficients and 0a  is a constant term. Since ( )tò depends on bioavailability of drugs 

and concentration in the required site, the graph of drug efficacy corresponds to the sketch in Figure 3.4. Since the graph is 

even, 0nb   while  

0
0

1
( )

L

a t dt
L

  ò  
( 1 2)

2 .( )t t
c b b

L


         (10) 

and   

0

1 2
( )co s

L

n

n t
a t dt

L L


  ò

4
cos ( 1 2) sin ( 1 2)( ) ( )b n n

t t t t
n L L

 


   .   (11) 

Hence Equation (9) reduces to, 

1

2 1 2 2 2
( ) 1 co s( ) n

n

t t n t
t c b a dt

L L L





    ò      (12) 

Let 
0 2 1 2 2

: 1( )t t
c b

L L
   ò  and  

    

1

2
( ) : cosn

n

n t
t a dt

L








  

1

4 1 2
cos ( 1 2) sin ( 1 2) cos( ) ( ) ( )

n

b n n n t
t t t t

n n L L L

  







    (13) 

then 
0( ) ( ).t t ò ò  From Equation (13) we observe that 

4
| ( ) |

b
t


 . The drug supply at any instant satisfy the 

inequality,  

 
0 0| ( ) | ( ) | ( ) | .t t t    ò ò ò         (14) 

It is  known practically that ( ) 0t ò . Therefore inequality (14) means that 
0 | ( ) | 0t ò  . That is,   

the amplitude of the drug concentration graph  fluctuation about c must be small in comparison to 
0ò . From Equation (5) it 

is seen that viral eradication is only possible if 

1( )

0
( ) 1

(1 )

b

vet
N T

 

 



 


ò         (15) 

Comparing with inequality (14), the bounds are obtained that the amplitude of drug concentration 

must be within for the reproductive ratio 0 1R  , a necessary condition for eradication of viral infection. The following 

proposition is thus made. 

Proposition 2 Viral Eradication is possible with the use of ARV’s if the drug efficacy ( ) 0t ò  satisfies the inequality 
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 
 

 



    


ò ò        (16) 

4. Numerical simulations 

In the simulation of the model system (1), the parameters in Table 1 below, will be used. Assumed are the following initial 

proportions of cell populations of each compartment when the epidemic is first tested in a person. 

1 2T(0) = 100, T (0) = 0.01, T (0) = 0.01, V(0) = 0.001 . 

Table 1.  Data for the CD4, CTL and Viral cell Interaction with Therapy model 

Parameter definition  Symbol Value 

Constant recruitment rate of naive CD4               s  2mm
-3 

Constant recruitment rate of CTL clone  
1s  1 mm

-3
 

Maximum growth rate of CD4                        r  0.035 mm
-3

day
-1

 

Infection rates of CD4 by  V    0.39 mm
-3

day
-1

 

Reduction of viral infectivity by CTL                                   a  0.07 mm
-3

day
-1

 

Natural death rate of naive CD4+T-cells                               
T  0.02 mm

-3
day

-1
 

Natural death rates of  1 2,  , T T V  1 2, , v    (0.032, 0.028, 2.64) mm
-3

day
-1

 

HAART or ARVs’ drug efficacies (Variable)    [0.01, 0.99] mm
-3

day
-1

 

Proportion of mutation during viral transcription (Variable)   [0.01, 0.99] mm
-3

day
-1

 

Viral burst size  N  500 mm
-3

day
-1

 

Effectiveness of CTL in reducing viral burst size  b  0.05 mm
-3

day
-1

 

CTL induced death rates of infected CD4+T-cells                   h  0.00002 mm
-3

day
-1

 

Natural growth rate of  CTL 
1r  0.025 mm

-3
day

-1
 

Death rate of  CT L                                          0.034 mm
-3

day
-1

 

Time delay during exposure and infectiousness of CD4   ( ,  )   (1, 1.2) day
-1

 

 

Using the parameters and variables defined in Table 1, the general dynamics of HIV virus and CD4+T- cells for model (1) 

during infection is illustrated in Figure 4.1. In absence of  reatment and CTL action  and , the cell 

interaction is oscillatory but eventually CD4+ T-cells drop much below the levels of virus cells as shown in Figure 4.2. 

Figure 4.1  Dynamics of cell populations without therapy. 

Source: Author 

Under treatment, with minimum amplitude of drug supply as low as 40%, the virus stabilizes and coexist within the host as 

illustrated in Figure 4.2.(b). Increasing drug efficacy above 60%, with the action of CTL as low as a = 0.02 and b= 0.05, the 
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viral population levels drop drastically but still exist as depicted in Figure 4.3.(a). Drug efficacy above 85% with little 

increase in CTL response, the viral levels is encouraging even with lower drug efficacy. See Figure 4.3.(b). The desired 

results is obtained. 

 

 

Figure 4.2. (a) Coexistence of HIV within host at less than 40% drug efficacy. (b) Coexistence of HIV within host at less 

than 60% drug efficacy. 

Figure 

4.3 (a)  Coexistence of HIV within host at less than 70% drug efficacy. (b) Treatment at 70% drug efficacy and time delay 

greater than 30 hours with as low effect of CTL as  a =0.07 and b =0.05 and induced death rate as low as h =0.00002. 

5. Conclusion and Recommendation 

From the analysis given it is noted that among the parameters which affect the management of HIV virus at very low levels, 

time delay and drug efficacy are the major contributors of stability condition. Since the lifespan of infected cell cannot be 

stretched beyond a certain limit, the minimum time delay before the infected cell become productive is given as τmin and the 

maximum lifespan of the cell will be our τmax.  Also at this range of time delay, the value of drug efficacy which is effective 

within an interval [50%, 70%]. Thus the administration dosages of treatment drugs must observe these critical levels. It is at 

this levels that the drug manufacturers must ensure that the concoction must contain ingredients necessary to cause the 

desired effects of prolonging the lifespan of infected cell to above τmin and the ability of the drug to prevent infection and 

reduce burst size must be within the stated range. Although these measures are highly individualized, the guidelines can 
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apply to most affected individuals and we recommend that further research on the same be done to include other necessary 

and significantly important parameters.  

In this work, other parameters which contribute to the dynamics of HIV virus were not considered and such extensions are 

recommended to suit the ideal situation. The dynamics of mutant virus were also ignored since they are drug resistant and 

cannot be affected by both time delay and drug efficacy which were fundamental to this study. 
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