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1. Introduction 

Let (X, d) be a metric space. Given Xx0 ∈  and self-maps A, S and T on X, if there exist points x1, 

x2, …, xn, … in X such that  

,AxSx 1n22n2 −− = n21n2 AxTx =− for n = 1, 2, 3, …,     …   (1) 

Then the sequence 
∞

=1nnAx  is an ( )T,S -orbit at x0 with respect to A.  

Definition 1.1. The space X is ( )T,S - orbitally complete with respect to A at x0 [4] if every Cauchy sequence in 

some orbit of the form from equation (1) converges in X.  

Definition 1.2. The pair ( )TS,  is Asymptotically regular at x0 with respect to A [4] if the orbit (1) satisfies the 

condition that ( ) 0AxAxd 1nn →+ +  as ∞→n .  

Definition 1.3. Self-map A on X is orbitally continuous at x0 if it is continuous at every point of some orbit at x0.  

 

Obviously every continuous self-map on X is orbitally continuous at each Xx0 ∈ . However the 

converse is not true as seen from [4]. 

Definition 1.4. Self-maps A and S are compatible [2] if ( ) 0SAx,ASxdlim nnn
=

∞→
 whenever 

( ) 0Ax,Sxdlim nnn
=

→∞
.  

Definition 1.5. Self-maps A and S are said to be weakly compatible [3] if they commute at their coincidence 

points.  

With these notions the following theorem was proved in [4]: 

Theorem A: Let A, S and T be self-maps on X satisfying the inequality. 

( ) ( ) ( ) ( ) ( ) ( ){ }Sx,Ayd,Ty,Axd,Ty,Ayd,Sx,Axd,Ay,AxdmaxcTy,Sxd ≤  

for all Xy,x ∈ , …    (2) 

where .1c0 <≤  Suppose that at Xx0 ∈ , 

(a) The pair ( )T,S  is asymptotically regular with respect to A. 

(b) The space X is orbitally complete 

(c) A is orbitally continuous 

(d) Either ( )S,A  or ( )T,A  is compatible pair.  

Then A, S and T will have a unique common fixed point. 

In this paper, we prove a generalization of Theorem A by using the property EA                 (cf. Section 

2), relaxing the condition (b), removing the condition (c) and weakening the        condition (d). 

 

2. Main result 

Definition 2.1. Self-maps A and S satisfy property E.A. [1] if there exists a sequence Xx
1nn ⊂

∞

=
 such that
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zSxlimAxlim nnnn
==

∞→∞→
.  

Theorem B: Let A, S and T be self-maps on X satisfying the inequality (2). 

Suppose that  

(e) either ( )S,A  or ( )T,A  satisfies property E.A.  

(f) A(X) is orbitally complete subspace of X.  

and  

(g) ( )S,A  or ( )T,A  is weakly compatible. 

Then all the three self-maps will have a unique common fixed point. 

Proof. By the property EA for the pair ( )S,A  we have 

 zSxlimAxlim nnnn
==

∞→∞→
 for some .Xz ∈       …  (3) 

Let pTxlim nn
=

∞→
. Now we prove that p = z.  

In fact from the inequality (2) with nxx = and nxy = we get 

( ) ( ) ( ) ( ) ( ){ }nnnnnnnnnnnn Sx,Axd,Tx,Axd,Tx,Axd,Sx,Axd,Ax,Axdmaxc )Tx ,d(Sx  ≤  

applying the limit as ∞→n  and then using (3), this gives 

( ) ( ) ( ){ }0,p,zd,p,zd,0,0maxcp,zd ≤  or ( ) ( )p,zdcp,zd ≤  so that p = z. 

Thus  .zTxlimSxlimAxlim nnnnnn
===

∞→∞→∞→
      …   (4) 

Equation (4) can also be obtained in similar lines whenever ( )T,A  satisfies property E.A. 

From the orbital completeness (f) we see that ( )XAz∈  so that Auz = for some .Xu ∈ . 

Now, taking ux =  and nxy =  in (2), 

( ) ( ) ( ) ( ) ( ){ }Su,Axd,Tx,Aud,Tx,Axd,Su,Aud,Ax,Audmaxc )Tx d(Su, nnnnnn  ≤  

Applying the limit as ,n ∞→ using (4) and zAu =  in this, we get  

( ) ( ) ( ){ }Su,Aud0,0,Su,Aud,0maxcAu,Sud ≤  ⇒ ( ) ( )Su,AudcAu,Sud ≤  or .zSuAu ==  

Then from the weak compatibility of )S,A( , we see that SAuASu =  or SzAz = . 

Again writing zyx == in the inequality (2) and using Az = Sz, it follows that 

( ) ( ) ( ){ } ( )Tz,Szcd0,Tz,Szd,Tz,Szd,0,0maxcTz,Szd =≤  so that TzSz = . 

That is, TzSzAz == .         …    (5) 

Taking zy,xx n == in (2), we have  

( ) ( ) ( ) ( ) ( ){ }nnnnnn Sx,Azd,Tz,Axd,Tz,Azd,Sx,Axd,Az,Axdmaxc Tz) ,d(Sx  ≤  

As limit ∞→n , this along with (4) and (5) implies that  

( ) ( ) ( ) ( ) ( ){ } ( )Tz,zcdz,Tzd,Tz,zd,Az,Azd,z,zd,Tz,zdmaxc Tz) d(z, = ≤  or z = Tz. 

Thus z is a common fixed point of self-maps A, S and T. 

On the other hand, with minor changes in the above proof we can prove that Au = Tu = z. 

Suppose that the pair ( )T,A  is weakly compatible. Then it follows that TAuATu = or                     Az = Tz. 

Proceeding as in the previous steps, we get that zSzTzAz === . 

Uniqueness: Let z, z′ be two common fixed points of A, S, and T. Then from (2) with x = z and y = z′, we get  

( ) ( ) ( ) ( ) ( ) ( ){ }Sz,'Azd,'Tz,Azd,'Tz,'Azd,Sz,Azd,'Az,Azdmaxc'Tz,Szd ≤  

⇒ ( ) ( ) ( ) ( ) ( ) ( ){ } ( )'z,zcdz,'zd,'z,zd,'z,'zd,z,zd,'z,zdmaxc'z,zd =≤  or z = z′. 

Hence the fixed point is unique. 

Remark 2.1. Suppose at some Xx0 ∈ , (a) holds good then from the proof of Theorem A,  the sequnce 

∞

=1nnAx  defined by (1) is Cauchy and hence by the orbital completeness, we can find some Xw ∈  such that  

,wTxlimAxlimSxlimAxlim 1n2n2n2nn2nn2n
==== +∞→+∞→∞→∞→

    

which immediately implies that the pairs )T,A( and ( )T,S  satisfy the property E.A. 
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Also every compatible pair is weakly compatible. Therefore a unique common fixed point follows from 

Theorem B, under the restricted orbital completeness of the space X. It is interesting to note that the orbital 

continuity is not needed to obtain a common fixed point.  

Corollary(Theorem C, [5]): Let A, S and T be self-maps on X satisfying (2). Given Xx0 ∈ , suppose that 

there is an orbit with choice (1) and the conditions (a) and (b) of Theorem A hold good at x0. If A is onto and the 

condition (g) of Theorem B hold good, then A, S and T will have unique common fixed point. 

Proof: Since A is onto we see that ( ) XXA = . In view of Remark 2.1, a unique common fixed point follows 

from Theorem B. 

 

References 

[1] M. Aamri and EI D. I. Mountawaki, Some new common fixed point theorems under strict contractive 

conditions, J. Math. Aanal. and Appl., 270 (2002), 181-188. 

[2] Gerald Jungck, Compatible mappings and common fixed points, Int. Jour. Math. & Math. Sci. 9 (1986), 

771-779. 

[3] Gerald Jungck and B. E. Rhoades, Fixed point for set-valued functions with out continuity, Indian J. pure 

appl. Math. 29 (3) (1998), 227-238. 

[4] T. Phaneendra, Orbitalcontinuity and common fixed point, Buletini Shkencor, 3(4) (2011),375-380. 

[5] Swatmaram and Phaneendra T, Common fixed points of Compatible self-mape using Asymptotic Regularity, 

Acta Ciencia Indica, 33 (3) (2007), 1243-1247. 

 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

