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Abstract 

Several remediation measures have been developed to circumvent the problem of collinearity in General Linear 

Regression Designs. These include the Generalized Ridge, Jackknife Ridge, second- order Jackknife Ridge 

estimation procedures. In this paper, an nth-order Jackknife Ridge estimator is developed using canonical 

parameter transformation. Using the MATLAB version 7 software, parameter estimates, biases and variances of 

these estimators are computed to show their behavior and strengths. The results show that the parameter 

estimates are basically the same for all the methods. There is variance reduction at the Generalized Ridge 

estimator and at the ordered Jackknife Ridge estimators, though the Generalized Ridge estimator is slightly 

superior in this respect. As the order of Jackknife Ridge estimator increases, the variance decreases up to a 

certain nth-order and remains constant thereafter. Where variances of two consecutive estimators are the same or 

nearly so, the last but one estimator is considered optimal. This establishes a convergence criterion for the 

sequence of Jackknife Ridge estimators. It is shown from the five illustrative design matrices that higher order 

Jackknife Ridge estimators are superior to lower order Jackknife Ridge estimators in terms of bias. Thus further 

solving the problem of bias introduced by the Ridge estimator.  

Keywords: Canonical transformation; collinearity; mean square error; positive definite matrix; squared bias; 

variance inflation. 

 

1.     INTRODUCTION 

One of the major consequences of multicollinearity on the Ordinary Least Squares (OLS) method of estimation 

is that it produces large variances for the estimated regression coefficients (Batah et al, 2008; Batah, 2011; 

Khurana, chaubey et al, 2012). This leads to poor prediction in certain regions of the regression space (Lesaffre 

& Marx,1993) as one is unable to determine the effect of each predictor on the response. A set of variables is 

said to be collinear if one or more variables in the set can be expressed exactly or nearly as a linear combination 

of the others in the set. To remedy this situation, several measures have been offered. These include: the Ridge 

regression method (Hoerl & Kendal, 1970; Lesaffre & Marx, 1993, Carley & Natalia, 2004, Belsley, et al 1980; 

Hawkins & Yin, 2002; Kleinbaum, et al, 1998; Maddala, 1992; Ngo et al, 2003; Mardikyan & Cetin, 2008), the 

iterative principal component method (Marx & Smith,1990b). 

   Ridge regression seeks to find a set of regression coefficients that is more stable in the sense of having a small 

Mean Square Error (MSE) since multicollinearity (collinearity) usually results in ordinary least square estimators 

that may have extremely large variances (Nelder & Wedderburn, 1972, Carley et al 2004). The ridge technique 

enlarges the small eigenvalue(s), thus decreasing the MSE which is defined as  ��� = ����	
� ′��
�� = �� ∑ �
��

����    where �� is the jth eigenvalue of � ′�. 

Large MSE suggests that estimated parameters may be far from the true ones. That is the variances of parameter 

estimates are inflated. Khurana et al (2012) developed the second-order Jackknife Ridge estimator (J2R) to 

further reduce the bias associated with the Ordinary Ridge estimator. The J2R estimator is superior to the 

Jackknife ridge estimator (JRE) in terms of bias. They also showed that the Jackknife Ridge estimator (JRE) is 

superior to the Generalized Ridge estimator (GRE) which in turn has a lower bias than the Modified Jackknife 

Ridge estimator (MJRE). 

In this paper a third-order Jackknife estimator is developed and a general nth-order Jackknife estimator is 

proposed as a result. The following design matrices each with collinearity among columns are used for 

illustration: 

X1 = [1,1,1,1; 2,3,4,5; 4,6,8,10; 15,22,19,40] 

X2 = [1,1,1,1; 2,3,2,4; 4,6,4,8; 15,22,19,40] 

X3 = [1,1,1,1; 1,2,3,4; 2,4,6,8; 15,22,19,40] 

X4 = [1,1,1,1; 3,4,3,5; 6,8,6,10; 15,22,19,40] 

X5 = [1,1,1,1; 4,5,4,6; 8,10,8,12; 15,22,19,40] 

The result of the analysis shows that the bias of the Jackknife Ridge Estimators, beginning from the first order up 

to the fifth order reduces at the speed of 10
-4

 per order. For instance, using matrix 1, the second eigenvalue λ2, 

and the 4
th

 category, the sequence of bias for the indicated estimators reduces at the speed of 10
-4

 per order and is 
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as follows: 0.397×10
-3

, 4.943×10
-7

, 0.614×10
-11

, 0.763×10
-15

, 0.949×10
-19

. The variances of the Jackknife 

estimators are basically constant but smaller than the variance of the Ordinary Least Squares estimator. Thus the 

advantage of the Ridge Regression estimator over the Ordinary Least Squares estimator is further improved by 

higher order Jackknife Ridge estimator. In section 1, the introduction is provided. In section 2, the model and 

Ridge estimators are introduced. Section 3 contains the proposed estimators. The comparison of the bias of the 

estimators is made in section 4, while section 5 contains the comparison of the MSE of the estimators. Section 6 

contains the illustrative examples. The conclusion is made in section 7.    

2. TH MODEL AND RIDGE ESTIMATORS 

       Consider a multiple linear regression model � = �� + �                                                                                                                                                                                                    (2.1) 

Where Y is an 
� × 1� vector of observations, � is a 
� × 1� vector of unknown regression coefficients, X is an 
� × �� matrix of explanatory variables ��, ��, … … , �!  and �  is an 
� × 1� vector of errors, the elements of 

which are assumed to be independently and identically normally distributed with �
�� = 0 $�% &$'
�� = ��(  

   The ordinary least square estimator known as best linear unbiased estimator corresponding to (2.1) is given as  �) = 
� ′��
�� ′�                                                                                                                                                                                      (2.2) 

   Although the OLS estimator in (2.2) is unbiased, it has the problem of inflated variance where collinearity is 

present which may result in estimators that are not in tune with the researcher’s prior belief. As a remediation 

measure, Hoerl & Kennard (1970) proposed the Generalized Ridge estimator (GRE). The Ridge estimator solves 

the problem inflated variance but is biased. It is given as �)*+ = 
� ′� + ,(�
�� ′�                                                                                                                                                                     (2.3) 

for some biasing constant ,. To alleviate the problem of bias in Ridge regression, Singh et al (1986) proposed an 

Almost Unbiased Ridge estimator (AUGRR) using the Jackknife technique which was actually introduced by 

Quenouille(1956).The Ridge regression estimator has undergone several modifications over the years. Batah et 

al (2008) introduced the modified Jackknife Ridge estimator (MJRE) by combining the ideas of GRE and 

Jackknife Ridge estimators. Batah (2011) again introduced another variant of the Jackknife estimator known as 

the Generalized Jackknife Ridge estimator (GJR) together with its associated Generalized Jackknife Ordinary 

Ridge estimator (GOJR).The Generalized Ridge estimator (GRE) leads to a reduction in the sampling variance 

whereas the Jackknife Ridge estimator (JRE) leads to the reduction of bias. Khurana, Chaubey & Chandra (2012) 

suggested a new Ridge estimator called the second- order Jackknife Ridge estimator (J2R) to further reduce bias. 

In this paper, a generalization for the nth-order Jackknife Ridge estimator is proposed for further reduction of  

bias. A convergence criterion is designed to select the optimal n so that an estimator with minimum n is selected 

for the most reduced bias and minimum variance. In canonical form model (1) can be written as  � = - ∝ +�                                                                                                                                                                                                    (2.4) 

Where - = ��, �  is the matrix of eigenvectors of � ′�. -′- = / = � ′� ′�� = / = %0$1
��, ��, … … , �!   

where �2 is the ith eigenvalue of � ′� ∝= � ′�  � ′� = �� ′ = (3   

Then OLS estimator of ∝ is given by ∝4= 
-′-�
�-′� = /
�-′�  

Thus the OLS estimator of � is given as �)567 = � ∝4567                                                                                                                                                                                             (2.5) 

The ordinary Ridge regression estimator (ORE) of � is �)5*+ = � ∝45*+= �
( − '9�
�� ∝4= �
( − '9�
��/
�-′�                                                                                       (2.6) 

Where  '� = '� = ⋯ = '! = ', ' ≥ 0  
(r = biasing constant) =%0$1
'� / = %0$1
�2�  

This is generalized to obtain the Generalized Ridge estimators of ∝ as ∝4<*+= 	/ + =�
�-′� = 	/ + =�
�/ ∝4= 	( − =
/ + =�
�� ∝= 	( − =9
�� ∝4                                      (2.7) 

where J is a 
� × ��  diagonal element whose non-negative entries are eigenvalues of �>�.  R is a 
� × �� 

diagonal matrix whose non-negative entries and biasing constants. �)<*+ = � ∝4<*+= �	( − =9
�� ∝4<*+                                                                                                                                      (2.8) 
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The Jackknife Ridge Estimator for ∝ is ∝4@*+=	( − 
=9
���� ∝4567= 	( − =∗9
�� ∝4567                                                                                                                        (2.9) 

The second-order Jackknife Ridge Estimator is ∝4@�*= 	( − 
=∗9
���� ∝4567   Where =∗ = =9
�=                                                                                                                     (2.10)  

3. THE PROPOSED ESTIMATOR  

        By extending the second-order Jackknife Ridge estimator to a proposed third-order Ridge estimator, a 

general nth-order Ridge estimator is proposed. The proposed third-order Jackknife Ridge estimator (J3R) 

denoted by ∝4@B* is defined as  ∝4@B*= 	( − 
=∗9
��B� ∝4567   

              = 	( − 
=�9
��B� ∝4567                                                                                                                                                                   (3.1) 

The proposed nth-order Jackknife Ridge regression estimator (JnR) is defined as  ∝4@C*= 	( − 
=∗9
��C� ∝4567                                                                                                                                                                     (3.2) 

where n=0,1,2,………. 

It is observed that an optimal n is achieved when the sequence of the variances of the estimator converges to the 

variance of the ordinary Least Squares estimator. Dℎ$D 0F &$'G∝4@C*H → &$'
∝4567�$F � → ∞.  
4. COMPARISON OF THE BIAS OF J2R, J3R AND JnR ESTIMATORS. 

The following theorems compare the performance of J2R and J3R and that of J(n-1)R and JnR in terms of bias. 

this comparison is similar to that of khurana et al (2012). 

Theorem 1 

Let R be a 
� × �� diagonal matrix with non-negative entries. Then the third-order Jackknife estimator ∝4@B*
2�, 
reduces the bias of the second-order Jackknife Ridge estimator ∝4@�*
2�, assuming '2 > 0. 
Proof 

The Jackknife Ridge Estimator for ∝  is ∝4@*+= 	( − 
=9
���� ∝4567= 	( − =∗9
�� ∝4567   

The second-order Jackknife Ridge Estimator is ∝4@�*= 	( − 
=∗9
���� ∝4567 KℎL'L =∗ = =9
�=  

Bias G∝4@*+H = �G∝4@*+H −∝4567                                                                                                                                                               (4.1) 

                              = �
∝4− =∗9
� ∝� −∝4567  

        = −=∗9
� ∝4567    
Similarly biasG∝4@B*H = �G∝4@B*H −∝4567                                                                                                                                                   (4.2) 

                                            = −
=∗9
��� ∝4567    

and biasG∝4@B*H = �G∝4@B*H −∝4567                                                                                                                                                     (4.3) 

          = −
=∗9
��B ∝4567       

Let |. |2 denote the absolute value of the 0 − Dℎ component. 

ThenNO0$F
∝4@�*H|2 = 
�P∗�Q

�PR�P�Q | ∝2 | = 
�PQ�Q


�PR�P�Q × �

�PR�P�Q | ∝2 | 

= �PS
�PR�P�S | ∝2 |                                                                                                                                                                                                  (4.4) 

and NO0$F
∝4@B*H|2 = 
�P∗�T

�PR�P�Q |�2| = �PU
�PR�P�U | ∝2 |                                                                                                                (4.5) 

Thus |O0$FG∝4@�*H|2 − |O0$FG∝4@B*H|2  

= �PS
�PR�P�S |∝2| − �PU
�PR�P�U | ∝2 |                                                                                                                                                              (4.6) 

= G�PQ�PSR��P�PVH|∝P|

�PR�P�U > 0 $F '2 > 0  

This proves that the third-order Jackknife reduces the bias of the second-order Jackknife ridge estimator.It has 

earlier been proven (Khurana et al 2012) that the second-order Jackknife reduces the bias of the Jackknife ridge 

estimator which in turn reduces the bias of the ordinary ridge estimator.This paper proposes a general extension 

of the third-order Jackknife Ridge estimator to an nth-order Jackknife Ridge estimator since it is shown that 

higher-order Jackknife Ridge estimators have lower biases. 

Theorem 2 

Let R be a 
�W��  diagonal matrix with non-negative entries. Then the nth-order Jackknife estimator ∝4@C*
2�reduces the bias of the (n-1)th-order Jackknife Ridge estimator ∝4@
C
��*
2�, assuming '2ϵ(0,1). 

Proof 

The Jackknife, second-order Jackknife and third-order Jackknife Ridge Estimators for ∝ are given respectively 

as: 
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∝4@*+= 	( − =∗9
�� ∝4567 , ∝4@�*= 	( − 
=∗9
���� ∝4567 

and ∝4@B*= 	( − 
=∗9
��B� ∝4567 

where =∗ = =9
�= 

Thus the (n-1)th-order Jackknife Ridge estimator for ∝ can be defined as ∝4@
C
��*= X( − 
=∗9
��
C
��Y ∝4567                                                                                                                                                       (4.7) 

and the nth-order Jackknife Ridge estimator is ∝4@C*= 	( − 
=∗9
��C� ∝4567   O0$F G∝4@
C
��*H = �G∝4@
C
��*H −∝4567                                                                                                                                            (4.8) = −
=∗9
��C
� ∝4567   

Let |. |2 denote the absolute value of the 0 − Dℎ component  

Then |O0$FG∝4@
C
��*H|2 = X�P∗Y
Z[\�

�PR�P�Q |∝2| = ]�P
Z[\�^
Z[\�

	�PR�P�
Z[\� × �
	�PR�P�Q |∝2| = �
Z[\�Q

	�PR�P�Q
Z[\� | ∝2 |                      (4.9) 

|O0$FG∝4@C*H|2 = 
�P∗�Z

�PR�P�Q = �PZQ


�PR�P�QZ | ∝2 |                                                                                                                                      (4.10) 

Hence NO0$FG∝4@
C
��*HN2 − NO0$FG∝4@C*HN2  

= �P
Z[\�Q
	�PR�P�Q
Z[\� |∝2| − �PZQ


�PR�P�QZ | ∝2 |                                                                                                                                                      (4.11) 

= |∝2|	�2 + '2��
�
C� ]'2
C
��� − _�2 + '2`
�'2C�^ > 0  

since '2a
0,1� 

This proves that the �Dℎ − b'%L' Jackknife estimator reduces the bias of the  
� − 1�Dℎ − b'%L'  Jackknife Ridge estimator. 

The Bias of the ordered Jackknife Ridge estimators can be written as follows: 

BiasG∝4@�*H = �X∝4@�*Y−∝ = �	( − 
=�9
���� ∝ −∝  = 	( − 
=�9
�����
∝4�−∝  = −
=�9
��� ∝= −
=∗9
��� ∝  

Similarly, 

BiasG∝4@B*H = −
=�9
��B ∝= −
=∗9
��B ∝ 

Bias
∝4@C*� = −
=�9
��C ∝= −
=∗9
��C ∝ 

Khurana, Chaubey & Chandra (2012) proved that the difference of total squared biases of the Jackknife Ridge 

Estimator (JRE) and second-order Jackknife Ridge Estimator (J2R) of  � , given by c� = ∑_|O0$FG�)@*+H|2� − |O0$FG�)@�*H|2�`  = �>_d	
9
�=∗�� − 
9
�=∗�e�d>`�                                                                                                                                               (4.12) 

where dO0$F
∝4� = O0$F
�)�  is non-negative. It is strictly positive if at least one
 '2, 0 = 1, … , � 0F �bF0D0&L. In the theorem that 

follows, they further proved the same result for the difference between the modified Jackknife Ridge (MJR) and 

the Generalized Ridge Estimators (GRE). 

Theorem 3  

Let R be a (p×p) diagonal matrix with non-negative entries, then the difference of total squared biases of the 

modified Jackknife Ridge (MJR) and Generalized Ridge Estimators (GRE) of β as given by 

c� = ∑_NO0$FG�)f@*HN2
� − NO0$FG�)<*+HN2

�`                                                                                                                                (4.13) 

is positive. 

Proof ∝4f@*= 	( − 
=9
����	( − =9
�� ∝4= 	( − 
9
�ф=��  

Where 
ф = 
( + =9
� − =∗9
�� and =∗ = =9
�=                                                                                                                   (4.14) 

O0$FG∝4f@*H = −
9
�ф= ∝    

∝4<*+= 	( − 
=9
���� ∝4   

Thus
 O0$F
∝4<*+� = −=9
� ∝ 

Component wise |O0$FG∝4f@*H|2 − |O0$F
∝4<*+�|2 = �P∅P�PR�P |∝2| − �P�PR�P |∝2|                                                                                          (4.15) 

= �Ph�R iPjPkiP
 iPQGjPkiPHQl
�PR�P | ∝2 | − �P�PR�P | ∝2 |  

= �P�PQ
�PR�P�T | ∝2 |  
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which is positive. 

Hence 

c� = ∑_NO0$FG�)f@*HN2
� − NO0$FG�)<*+HN2

�`                                                                                                                              (4.16) 

= �>_d	
9
�ф=�� − 
9
�=���d>`�  

= �>_d	9
�ф=9
�ф= − 9
�=9
�=�d>`�  

= �>_d9
�	
ф=�� − =��9
�d>`�  

= �P�PQ
�PR�P�T | ∝2 |  

which is positive definite. 

Singh et al (1986) proved that the total squared bias for the second-order Jackknife Ridge estimator is less than 

that of the Jackknife Ridge estimator. Putting this together with the foregoing theorem, we have the following 

ordering: �OG�)@�*H < �OG�)@*+H < �OG�)<*+H < �O
�)f@*�  

where
  �O = DbD$n squared bias. 

Following the theorem that compares the bias of the second-order and third-order Jackknife Ridge estimators and 

that of the (n-1)th-order  and nth-order Jackknife Ridge estimators stated and proven in this study, a general 

ordering for the total squared biases for the Modified Jackknife and ordered Jackknife Ridge estimators can be 

written as O�
�)@C*� < O�G�)@
C
��*H < �OG�)@�*H < �OG�)@*+H < O�G�)<*+H < O�
�)f@*�  

 

 5.  COMPARISON OF THE MSE OF J2R, J3R AND JnR ESTIMATORS  

Batah et al (2008) proved that the Mean Square Error (MSE) of the Modified Jackknife Ridge (MJR) estimator is 

smaller than that of the Jackknife Ridge estimator. Khurana, Chaubey & Chandra (2012) proved by the theorem 

that follows that the JR estimator dominates the J2R estimator by MSE evaluation. 

Theorem 4 

Let R be a (p×p) diagonal matrix with non-negative entries. Then the difference of the MSE matrix of the 

second-order Jackknife estimator and the Jackknife Ridge estimator, 
 ∆�= ���G∝4@�*H − ���
∝4@*+� 

is a positive definite matrix if and only if the following inequality is satisfied: ∝> _p
�	��q + 
9
�=∗�� ∝∝> 
=∗9
����p
�`
� ∝≤ 1  

where
  p = 9
�=∗, =∗ = =9
�=   

and   
                                                                                                                                   (4.17) 

q = 	( − 9
�=∗�/
�	( − 9
�=∗�′_	( + 9
�=∗ + (�9
�=∗`                                                                                  (4.18) 

Proof 

Using the expression of the variance-covariance matrix of the least squares estimator, that is s$'
∝4� = ��
-t-�
� = ��/
�  and the expression for JRE as earlier stated, it can be written  that    (4.19) 

s$'G∝4@*+H = �	u∝4@*+− �G∝4@*+Hv u∝4@*+− �G∝4@*+Hv�� = 	( − 9
�=∗�s$'
∝4�	( − 9
�=∗�′   
= 	( − 9
�=∗���/
�	( − 9
�=∗�′                                                                                                                                             (4.20) 

Further using the expression for O0$FG∝4@*+H from (4.1), it can be written that ���G∝4@*+H = 	( − 9
�=∗���/
�	( − 9
�=∗�′ + 9
�=∗ ∝∝
� =∗9
�                                                    (4.21) 

Similarly using the expression for s$'
∝4@�*� as given by s$'G∝4@�*H = 	( − 
9
�=∗�����/
�	( − 
9
�=∗���′   
and the expression forO0$F
∝4@�*� from(4.2) we have ���G∝4@�*H = 	( − 
9
�=∗�����/
�	( − 
9
�=∗���� + 
9
�=∗�� ∝∝′ 
=∗9
���                        (4.22) 

from (4.21) and (4.22),∆1 becomes ∆�= ��q + 
9
�=∗�� ∝∝′ 
=∗9
��� − 9
�=∗ ∝∝′ =∗9
�  

where q = 	( − 
9
�=∗���/
�	( − 
9
�=∗���′ − 	( − 9
�=∗�/
�	( − 9
�=∗�′  
 = 	( − 9
�=∗�/
�	( − 9
�=∗�′_	( + 9
�=∗�	( + 9
�=∗�′ − (` 

= 	( − 9
�=∗�/
�	( − 9
�=∗�′_	( + 9
�=∗ + (�	( + 9
�=∗ − (�`  

= 	( − 9
�=∗�/
�	( − 9
�=∗�′_	( + 9
�=∗ + (�9
�=∗`  

But 	( − 9
�=∗� is a diagonal matrix with positive entries and  _	( + 9
�=∗ + (�9
�=∗`  is also positive definite 

Thus M is also positive definite and hence the difference ∆�  is positive definite if and only if p
�∆�p
�  is 

positive definite. 
 p
�∆�p
� = p
�	��q + 
9
�=∗�� ∝∝′ 
=∗9
����p
�−∝∝′  
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The matrix 	��q + 
9
�=∗�� ∝∝t 
=∗9
���� in the above equation is symmetric positive definite. Therefore, it 

is concluded that p
�∆�p
� is positive definite if and only if ∝′ _p
�	��q + 
9
�=∗�� ∝∝′ 
=∗9
����p
�`
� ∝≤ 1  

= 	( − 
9
�=∗���/
�	( − 
9
�=∗���′_	( + 9
�=∗ + (�	( + 9
�=∗ − (�`  

= 	( − 
9
�=∗���/
�	( − 
9
�=∗���′_	( + 9
�=∗ + (�9
�=∗`                                                                                 (4.23) 

The matrix M is positive definite and hence the difference ∆� is positive definite if and only if p
�∆�p
�  is 

positive definite.  p
�∆�p
� = p
�	��q + 
9
�=∗�B ∝∝′ 
=∗9
��B�p
�−∝∝′                                                                                      (4.24) 

The matrix 	��q + 
9
�=∗�B ∝∝t 
=∗9
��B � 0�  
4.24�  is symmetric positive definite. Hence using lemma 1 

we conclude that p
�∆�p
�is positive definite if and only if the following inequality is satisfied. 
 ∝′ _p
�	��q + 
9
�=∗�B ∝∝′ 
=∗9
��B�p
�`
� ∝≤ 1 

Theorem 5 

  Let R be a (p×p) diagonal matrix with non-negative entries. Then the difference of the MSE matrix of the third 

order Jackknife estimator and the second-order Jackknife Ridge estimator,
 

    ∆�=���
∝@B*� −���
∝@�*�                                                                                                                                                           (4.25) 

is a positive definite matrix if and only if the following inequality is satisfied: ∝′ _p
�	��� + 
9
�=∗�B� ∝∝′ 
=∗9
��B�p
�`-1∝≤ 1                                                                                                 (4.26) 

where
 p=9
�=∗,    =∗ = =9
�=  

and
                                                                                   (4.27) 

9
�=∗`M = 	p − 
9
�=∗���/
�	p − 
9
�=∗���′_	( + 9
�=∗ + (�                                                                     (4.28) 

Proof  

Using the expression of the variance – covariance matrix of the least squares estimator, that is &$'
∝4� = ��
-t-�
� and the expression for /2= given in (2.10), we have. 

&$'G∝4@�*H = �	u∝4@�*− �G∝@�*Hv u∝4@�*− �G∝4@�*H′v′�  

= 	( − 
9
�=∗���&$'
∝4�	( − 
9
�=∗���′   = 	( − 9
�=∗���/
�	( − 9
�=∗�′                                                                                                                                                   (4.29) 

Also using the expression for Bias 
∝4@�*� from   (4.2), we obtain ���G∝4@�*H = 	( − 
9
�=∗�����/
�	( − 
9
�=∗���′ + 
9
�=∗�� ∝∝′ 
=∗9
���                               (4.30) 

Similarly using the expression for Bias 
∝4@B*� given by (4.3) we have &$'G∝4@B*H = 	( − 
9
�=∗�B��/
�	−
9
�=∗�B�′                                                                                                              (4.31) 

���G∝4@B*H = 	( − 
9
�=∗�B���/
�	( − 
9
�=∗�B�′ + 
9
�=∗�B ∝∝′ 
=∗9
��B                               (4.32) 

Thus ∆�= ���G∝@B*H − ���
∝@�*�                                                                                                                                                      (4.33) 

= ��q + 
9
�=∗�B ∝∝′ 
=∗9
��B − 
9
�=∗�� ∝∝′ 
=∗9
���  

where q = 	( − 
9
�=∗�B�/
�	( − 
9
�=∗�B�′ − 	( − 
9
�=∗�/
�	( − 
9
�=∗���′  
 = 	( − 
9
�=∗���/
�	( − 9
�=∗�′_	( + 9
�=∗�′ − ( 

= 	( − 
9
�=∗���/
�	( − 
9
�=∗���′_	( − 9
�=∗�	( − 9
�=∗�′ − (                                                              (4.34) 

These proofs (theorems 3 and 4) show that the /2= does not improve on /=� and /3= does not improve on /2= 

in terms of ��� and by extension we conclude that /�= does not improve on /
� − 1�=  in terms of ���.  
Variance 

The
 &$'
∝4567� = ��
-′-�
� = ��/
�                                                                                                                                    (4.35) 

�� = {′{
∝4|}~′ �′{
C
!
� , ∝4= 
-′-�
�-′� b' ��� = G{
���H′
{
����

C
!    

&$'G∝4@*+H = 	( − 9
�=∗���/
�	( − 9
�=∗�′                                                                                                                   (4.36) 

Where  


( − 9
�=�� = %0$1
 �\�
�\R�\�� , … , �P�
�\R�\�� … , �����R��                                                                                                       (4.37) 

&$'G∝4@�*H = 	( − 
9
�=∗����/
�	( − 
9
�=∗���′                                                                                                      (4.38) 

&$'G∝4@B*H = 	( − 
9
�=∗�B���/
�	( − 
9
�=∗�B�′                                                                                                   (4.39) 

&$'G∝4@C*H = 	( − 
9
�=∗�C���/
�	( − 
9
�=∗�C�′                                                                                                  (4.40) 

        
These variances are now computed and compared using illustration examples. 

 

6. ILLUSTRATIVE EXAMPLES 

    The biases and variances of the OLS, GR, JR, J2R and J3R estimators were computed for five design matrices 

each having two collinear explanatory variables. Results are reported for the ∝ and � estimates in each of the 
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five design cases. Comparison is therefore made for these estimators in terms of bias and variances. The results 

are tabulated in the tables shown in the appendix. 

 

7. DISCUSSION 

The proposed third – order Jackknife estimator is superior to the second – order Jackknife which in turn is 

superior to the ordinary Jackknife estimator in terms of bias (table 3). It is also proven that the nth – order 

Jackknife Ridge estimator is superior to the (n-1)th  Jackknife estimator by bias evaluation. It can then be 

concluded that higher order Jackknife Ridge estimators have lower biases which approach zero as the order n 

increases. In terms of variance, the higher – order Jackknife estimators are superior to the ordinary least square 

estimator but they converge to the ordinary least estimator with increasing n (table 2). The Jackknife Ridge and 

the ordered Jackknife Ridge estimators are basically the same in value but differ from the Ordinary Least Square 

estimators in all the five illustrative examples (table 1). This shows that the proposed higher order Jackknife 

estimators are superior to the existing Ordinary Ridge, Generalized Ridge and second-order Jackknife Ridge 

estimators. 
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Appendix 
Table 1 : Parameter estimates 

 OLS GR JR J2R J3R 

Design 

Matrix 1 

0 

0.827 
0.135 

3.2 

0 

1.2156 
0.9229 

2.9316 

0 

0.8177 
0.1349 

3.1997 

0 

0.8178 
0.1349 

3.1997 

0 

0.8178 
0.1349 

3.1997 

Design 

Matrix 2 

0 

-14.4799 
-14.4799 

5.7926 

0 

-14.2539 
-14.2539 

5.750 

0 

-14.2539 
-14.2539 

5.7501 

0 

-14.4764 
-14.4764 

5.7919 

0 

-14.4798 
-14.4798 

5.7925 

Design 
Matrix 3 

0 
31.5286 

-88.7767 

-8.7051 

0 
31.2979 

-71.8928 

-9.8686 

0 
31.5023 

-86.5238 

-8.9002 

0 
31.5276 

-88.7150 

-8.7112 

0 
31.5282 

-88.7712 

-8.7064 

Design 
Matrix 4 

0 
-14.2486 

-14.2486 

5.9836 

0 
-12.4487 

-12.4487 

5.6449 

0 
-10.8707 

-10.8707 

5.3486 

0 
-8.2765 

-8.2765 

4.8613 

0 
-6.2844 

-6.2844 

4.4870 

Design 

Matrix 5 

0 

-151.2359 

199.8510 
-20.1993 

0 

-138.5480 

153.9237 
-15.4917 

0 

-149.1688 

190.8510 
-19.2119 

0 

-151.1533 

199.4192 
-20.1524 

0 

-151.2407 

199.8561 
-20.1961 

 

Table 2: Variances of the OLS, GR, JR, J2R, J3R, J4R, J5R. 

 OLS GR JR J2R J3R J4R J5R 

Matrix 1 0 

1.0959 

0.0583 
0.0175 

0 

1.06 

0.0585 
0.0174 

0 

1.0957 

0.0583 
0.0175 

0 

1.0942 

0.0582 
0.0174 

0 

1.0953 

0.05872 
0.0177 

0 

1.0953 

0.0587 
0.0177 

0 

1.0953 

0.0587 
0.0177 

Matrix 2 0 

0 

9.0652 
0.0189 

0 

0 

6.9612 
0.0182 

0 

0 

8.7900 
0.0189 

0 

0 

9.0611 
0.0189 

0 

0 

9.0653 
0.0189 

0 

0 

9.0653 
0.0189 

0 

0 

9.0653 
0.0189 

Matrix 3 0 

0 
3.3638 

0.0186 

0 

0 
3.0319 

0.0185 

0 

0 
3.3466 

0.0186 

0 

0 
3.3638 

0.0186 

0 

0 
3.3638 

0.0186 

0 

0 
3.3638 

0.0186 

0 

0 
3.3638 

0.0186 

Matrix 4 0 

0 
9.0575 

0.0189 

0 

0 
6.9553 

0.1876 

0 

0 
8.7825 

1.8804 

0 

0 
9.0575 

1.8804 

0 

0 
9.0575 

1.8804 

0 

0 
9.0652 

0.0189 

0 

0 
9.0652 

0.0189 

Matrix 5 0 
5.9621 

0.4823 

0.0044 

0 
3.7134 

0.4196 

0.00436 

0 
5.4438 

0.4814 

0.0044 

0 
5.9386 

0.4823 

0.0044 

0 
5.9611 

0.4823 

0.0044 

0 
5.9621 

0.4823 

0.0044 

0 
5.9621 

0.4823 

0.0044 

 
Table 3 : Biases for OLS, GR, JR, J2R, J3R, J4R, J5R…… 

 Eigenvalues GR JR J2R J3R J4R J5R 

Matrix 1 �� 0 

0.0092 
0.0015 

0.0357 

0 

0.102×10-3 
0.016×10-3 

0.397×10-3 

0 

1.263×10-7 

0.208×10-7 

4.943×10-7 

0 

0.158×10-11 

0.025×10-11 

0.614×10-11 

0 

0.197×10-15 

0.032×10-15 

0.763×10-15 

0 

0.245×10-19 

0.040×10-19 

0.949×10-19 

Matrix 2 �� 0 
0 

-20.762 

3.2813 

0 
0 

-20.7626 

3.2813 

0 
0 

-20.7626 

3.2813 

0 
0 

-20.7626 

3.2813 

0 
0 

-20.7626 

3.2813 

0 
0 

-20.7626 

3.2813 

Matrix 3 �� 0 
0 

26.2634 

3.2989 

0 
0 

26.2634 

3.2989 

0 
0 

26.2634 

3.2989 

0 
0 

26.2634 

3.2989 

0 
0 

26.2634 

3.2989 

0 
0 

26.2634 

3.2989 

Matrix 4 �� 0 

0 

0.2125 
102.387 

0 

0 

20.7626 
3.2813 

0 

0 

20.7626 
3.2813 

0 

0 

20.7626 
3.2813 

0 

0 

20.7626 
3.2813 

0 

0 

20.7626 
3.2813 

Matrix 5 �� 0 

47.9291 

-22.980 
0.6960 

0 

10.0611 

-4.8442 
0.1469 

0 

0.4469 

-0.2125 
0.0065 

0 

0.0198 

-0.0096 
0.0003 

0 

0.0008815 

-0.000424 
0.0000129 

0 

0.0003915 

0.0001889 
0.0000057 

  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

