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Abstract 

Most of the Ridge regression estimators can only achieve one property or the other, namely, variance reduction, 

bias reduction or reduced Mean Square Error. To achieve both variance and bias reduction in Logistic Ridge 

regression the Modified Logistic Ridge regression estimator is designed. The estimator is used to model the 

survival function of diabetic patients who are exposed to some specified medication. The model is formulated in 

such a way that the response probability is made to act as survival function. By some radical exponentiation of 

the weight function, the proposed estimator is found to have smaller bias than the Generalized Ordinary Logistic 

Ridge estimator. 
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1.0 INTRODUCTION 
There exists a large volume of literature in the solution of collinearity problem among explanatory variables in 

Generalized Linear Model analysis. The most celebrated Rigde regression technique came with it, the problem of 

bias. Many authors, including Belsley, Edwin, Welsch (1980), Madala (1992), Hawkins, Yin (2002), Carley, 

Kathleen, Natalia (2004), Batah (2011), Khurana, Chanbey, Chandra (2012) and Muniz, Kibira, Manson, Shukur 

(2012) have made significant inputs in the reduction of bias associated with the Ridge regression procedure.  

Singh and Chanbey (1987), Nomura (1988) and Gruber (1998), Batah (2011), Khurana et al (2012) developed 

the Jackknife Ridge estimators to further reduce bias in Ridge regression for General Linear Models using 

canonical transformation. Even though much work has been done in Ridge regression estimation in General 

Linear Models, not much has been done in the case of Generalized Linear Model. In this paper, we develop the 

modified Logistic Ridge estimator using canonical transformation as a special case of the Generalized Linear 

Model estimator. Two theorems with their corresponding proofs are developed to support the theory in addition 

to an illustrative example. Both the theorems and the illustrative example demonstrate the fact that the proposed 

method is superior to its Ridge Logistic equivalent in terms of bias and variance reduction. The existence of 

collinearity is established among explanatory variables from the eigenvalues of the information matrix and from 

the collinearity matrix. 

 

2.0 ORDINARY RIDGE REGRESSION ESTIMATOR FOR GENERAL LINEAR MODELS 
The multiple linear regression model  

(1)Y X eβ= +  

where Y is an ( 1)n× vector of observations, β  is a ( 1)p× vector of unknown regression coefficients, X is an 

( )n p×  matrix of explanatory variables 1 2, ,..., pX X X  and e is an ( )1n× vector of errors can be written in 

canonical form as  

(2)Y Z eα= +  

where ,Z XT=  T is the matrix of eigenvectors of 
'X X . 

1 2' ' ' ( , ,..., )pZ Z T T X XT diag λ λ λ= = =  

where iλ is the ith  eigenvalue of ' .X X  

' ,Tα β=             ' ' pT T TT I= =  

Then the OLS estimator of α is given by 
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K  is a biasing constant. K can be generalized as ( )1 2
, , ...,

p
K k k k=  so  

that 1 2( , , ..., )pKI diag k k k=  

to yield the Generalized Ordinary Ridge estimator, 
1ˆ

垐 ( ) (6)GOR GOR GORT T I KAβ α α−= = −  

where 1 1 2 2( , , ..., )p pA diag k k kλ λ λ= + + + . 

iλ  is the ith  eigenvalue of ( ' )X X kI+ . 

This is now extended to model the Logistic Ridge regression estimator and its subsequent modification, the 

modified Logistic Ridge regression estimators as a special case a Generalized Linear model in canonical form. 

3.0 THE LOGISTIC RIDGE REGRESSION ESTIMATOR 

The Generalized Ridge regression estimator which we now state in canonical form is given as 
1ˆ

垐 ( ) (7)
GLS GLS GLS

T T I KAβ α α−= = −  

where T is as earlier defined, 

1 2( , , ..., )pK k k k=  

( )i iA diag kλ= +  

iλ  is the ith eigenvalue of ( ' )X WX KI+ . 

4.0 THE MODIFIED LOGISTIC RIDGE REGRESSION ESTIMATOR 

To reduce the bias associated with the Generalized Logistic Ridge estimator and at the same time further reduce 

the variances of parameter estimates, the modified Logistic Ridge regression estimator is proposed in this work. 

It is given as follows: 
1ˆ ˆ( ) (8)MLS GLST I KAβ α−= −  

where ( )i iA diag kλ= +  

iλ  is the ith  eigenvalue of  
1( ' ), 0 1X W X KIδ δ+ + ≤ ≤  

In both estimators, 1 2, , ..., pK k k k=  is a generalized biasing constant whose ith  coordinate is obtained by 

Khalaf and Shukur (2005) as 
2

max

2 2

max max

ˆ
(9)

ˆˆ( )
i

t
k

n p t

σ
σ α

=
− +

 

where maxt  is the maximum eigenvalue of the information matrix, 
2σ̂  is the Residual Mean Square estimator of 

the error variance
2σ . 

This estimator, the Modified Logistic Ridge regression estimator is used to model the response probability 

associated with the survival of diabetic patients given their gender status, Fastng Sugar Blood (FSB) status and 

values of their Body Mass Indices (BMI) in a hypothetical illustration. 

 

5.0 THE MODEL 

The response probability ijkµ  is modeled as 
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Where ijkµ  is the probability that a diabetic patient of the ith  sex status with a jth FBS status and kth  BMI 

value has a survival time longer than or equal to ten years from the date of commencement of treatment. kβ  is 

the fixed effect parameter with 1, 2,3,k =  ,i jX  is the ( , )i j th  element of the design matrix. This is an attempt 

to model a logistic regression model as a survival function ( ).S t  

The survival function, ( )S t  measures the probability that the survival time, T  is greater than or equal to some 

specified time t . This is achieved by defining the response variable as survival time status h  such that 1h =
stands for survival time ≥10years and 0h = stands for survival time < 10years. The following theorems are 

formulated and proven to support the analysis and conclusion in this study. 

THEOREM 1 

Let M be a ( )p p×  diagonal matrix with non-negative entries. Then the bias of the proposed Modified Logistic 

Ridge estimator ˆ
MLSα  is smaller than the bias of the ordinary Logistic Ridge estimator ˆ

OLSα . 

PROOF 
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Component-wise, 

垐( ) (12)
( )

i
ORL i

i i

k
bias

k
α α
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=

+
 

Where iλ  is the ith  eigenvalue of ( )'X WX KI+ . 

Similarly, 

1
ˆ( ) (13)

( )

i
MLR i

i i

k
bias

kδ
α α

λ +
=

+
 

Where 
1i δ

λ
+

 is the i th  eigenvalue of 
1( ' ), 0 1X W X KIδ δ+ + ≤ ≤  

From (10) and (11), it is enough to show
1

垐( ) ( )MLR OLR ii
bias bias iff

δ
α α λ λ

+
< > . 

The eigenvalue of a (2 2)× weighted matrix 'X WX  are given as 

2 2 2 2 2 2 2 2 2 2

1 11 2 21 1 12 2 22 1 11 2 21 1 12 2 22

1
2 2 2 2 2

1 11 2 21 1 12 2 22 1 11 12 2 21 22 1 12 11 2 22 21

1
[[( ) ( ) ] {[( ) ( )

2

4[( )( ) ( )( )]} ]

w x w x w x w x w x w x w x w x

w x w x w x w x w x x w x x w x x w x x

λ = + + + ± + + +

− + + − + +

 

These eigenvalues can be increased by increasing the diagonal elements of  ' ,X WX .i e  by increasing 

2 2 2 2

1 11 2 21 1 12 2 22( ) ( )w x w x and w x w x+ +  
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Since 11 12 21 22, , , 0x x x x ≥ , increasing 
2 2 2 2

1 11 2 21 1 12 2 22( ) ( )w x w x and w x w x+ +  implies increasingw . 

This can be generalized to any ( )p p× weighted matrix. But 
1 ii δ

λ λ
+
> . 

Hence 垐( ) ( )MLR OLRbias biasα α< . 

Following the lines of Dorugade and Kashid (2011) and Nja (2013), in their theorems on variance reduction for 

their proposed estimators, we formulate the following theorem: 

THEOREM 2 

Let C be a ( )p p× symmetric positive definite matrix. Then the proposed Modified Logistic Ridge (MLR) 

estimator has smaller variance than the ordinary Logistic Ridge (OLR) estimator. 

PROOF 

Let  ˆ( )OLRV α  be variance of the Ordinary Ridge estimator and ˆ( )MLRV α  the variance of the proposed 

Modified Logistic Ridge estimator. 

( ) ( )(OLR i OLR i OLRA diag Kλ= +  

and iλ  is the ith  eigenvalue of ( ' )X WX KI+  

( ) ( )( )MLR i MLR i MLRA diag kλ= +  

OLRW = weight matrix of the Ordinary Logistic Regression estimator 

1

MLRW W
δ+= =enhanced weight matrix of the proposed method where 0 1δ≤ ≤  

We show that 

垐( ) ( ) 0OLR MLRV Vα α− >  

2 1 2 1
垐( ) ( ) ' 'OLR MLR OLR OLR OLR MLR MLR MLRV V W A W W A Wα α σ σ− −− = −  

  
2 1 1 1 2 1 1 1[( ) ( ) '] [( ) ( ) ']OLR MLRI KA K A K I KA K I KA K A K I KA Kσ σ− − − − − −= − − − − −  

  
2Cσ=  

where 
1 1 1 2 1 1 1[( ) ( ) '] [( ) ( ) ']OLR MLRC I KA K A K I KA K I KA K A I KA Kσ− − − − − −= − − − − −
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It is left to show that ( ) ( )i MLR i OLRλ λ> . 

From theorem 1,  ( ) ( )i MLR i OLRλ λ>   

Hence   

2 2

( ) ( )

3 3

( ) ( )( ) ( )

i MLR i OLR

i MLR i i OLR ik k

λ λ

λ λ
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+ +
 

 C∴  is positive definite 

Thus 垐( ) ( )MLR OLRV Vα α< . 
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6.0 ILLUSTRATIVE EXAMPLE 
The table below shows the data on diabetic patients, their sex, Fasting Blood Sugar (FBS), Body Mass Index 

(BMI). The study population consists of people who visited a hospital as out-patients, were placed on a particular 

treatment and followed up. The response survival time is dichotomous. Also two of the explanatory variables, 

sex and FBS status are dichotomous while BMI is continuous. 

Parameter estimators of the response probability are obtained using our proposed Modified Logistic Ridge 

regression estimators aided by MATLAB software. 

The table is as follows: 

Table 1: Diabetic Data 

Sex            FSB                BMI Surv. Time ≥ 10           Surv.T<10       Total 

Male           <  6.5             10.1     7                                           4         11 

Male           ≥ 6.5             15.3     4                                           8         12 

Female       <   6.5             16.6     5                                           4          9 

Female       ≥ 6.5              36     6                                           8         14 

The following solutions were obtained for the first and second iterations. 

Table 2: Parameter estimates and their corr. Variance 

First Iteration 

 

 

Ordinary Ridge 

Parameters Estimates 

�� = 0.0645 

   �� = −0.6123 

   �� = −1.4455 

�� = 0.0468 

Variance of Estimators 

             0.5701 

             1.8097 

             1.3725 

             0.0070 

 

Proposed 

�� = 0.0618 

   �� = −0.6215 

   �� = −1.4549 

�� = 0.0474 

             0.3784 

             1.2528 

             0.8995 

             0.0046 

 

Second Iteration 

 

 

Ordinary Ridge 

Parameters Estimates 

�� = 0.0409 

   �� = −0.6444 

   �� = −1.4932 

�� = 0.0502 

Variance of Estimators 

             0.5886 

             1.8707 

             1.4815 

             0.0072 

 

Proposed 

�� = 0.0345 

�� = 0.5461 

�� = 1.3795 

�� = 0.0445 

             0.3872 

             1.4966 

             1.1094 

             0.0052 

 

 

Table 3: Bias of the estimators at second iteration 

Ordinary        ��                           ��                              ��                             ��    6.06 × 10��      

6.12 × 10��                  1.3964                  4.840 × 10��                                                            

Proposed 2.39 × 10��                6.11 × 10��              1.3897                       4.836 × 10��       

 

RESPONSE PROBABILITIES 

Looking at the table of the illustrative example (Table 1), the response probabilities are shown according to the 

subpopulations as follows: 

1. The probability that a male with FBS < 6.5 whose BMI is 10.1 having been subjected to some 

medication will survived for 10 or more years is 0.7496. 

2. Probability that a male with FBS ≥ 6.5, BMI 15.3 will survive 10 or more years is 0.4721 

3. Probability that a female with FBS < 6.5, BMI 16.6 will survive 10 or more years is 0.5565 

4. Probability that a female with FBS ≥ 6.5, BMI 36 will survive 10 or more years is 0.4236. 

 

7.0 DISCUSSION  

For the same value of the biasing constant k , the Modified Logistic Ridge estimator reduces the bias of the 

Ordinary Logistic Ridge estimator. This is seen from the result of the illustrative example as shown in table 3. 
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The bias of the Ordinary Logistic Ridge estimator component-wise for ( )1 2 3 4, , ,λ λ λ λ  are 

4 1 26.06 10 , 6.12 10 ,1.3964 4.840 10and− − −× × ×  while those of the Modified Logistic Ridge estimator 

(proposed) are 
4 1 22.39 10 , 6.11 10 , 1.3897 4.863 10and− − −× × × . The variances of parameter estimates 

show significant difference between the two methods. The proposed method has smaller variances of parameter 

estimates as shown in table 2. The variances of estimates for the Ordinary Logistic Ridge estimator are 0.5886, 

1.8707, 1.4815, and 0.0072 while those of the proposed method are 0.3872, 1.4966, 1.1094 and 0.0052. Two 

theorems, one on the comparison of bias and the other on the comparison of variances of parameter estimates 

between the two methods are formulated and proven in this paper to provide a theoretical basis for effective 

assessment of the methods. 

The parameter estimates for the Ordinary Logistic Ridge estimator are 

0 1 2 3
垐 垐0.0409, 0.6444, 1.4932, 0.0502andβ β β β= = − = − = while those of the proposed method are 

0 1 2 3
垐 垐0.0345, 0.5461, 1.3795, 0.0445 .andβ β β β= = = =  The response probabilities show that people 

with lower Fasting Blood Sugar have a higher probability of surviving with diabetic medication for 10 or more 

years irrespective of their sexes. This is also true for people with lower Body Mass Indices. 

The Kaplan Meir survival function estimator lacks the ability to model survival probability as a function of both 

categorical and continuous explanatory variables. By a careful design of the model, the response probability has 

been made in this work to behave like the survival function in that it is made to measure the probability of 

survival time. This response probability can be used to obtain the product binomial probability. 

 

8.0 CONCLUSION 

The proposed Modified Logistic Ridge regression model is superior to the Generalized Ordinary Logistic Ridge 

regression model in terms of bias and variance of parameter estimates. The proposed estimator is one estimator 

that satisfies both properties simultaneously. By a careful design of the model, the response probability is made 

to behave like the survival function in that it is formulated to measure the probability of survival time. It is 

demonstrated that people with lower Fasting Blood Sugar have a higher probability of surviving with diabetic 

medication for 10 or more years irrespective of their sexes. The same goes for people with lower Body Mass 

Indices. 

 

REFERENCES 

1. Batah, F.S. (2011). A new Estimator By Generalized Modified Jackknife Regression   Estimator: Journal of 

Basarah Researches (Sciences), 37(4) 138-149 

2. Belsley, D.A: Edwin, K: Welsch, R.E. (1980). Regression Diagnostics: Identifying influential data and 

sources of collinearity. Wiley, New York 

3. Carley, Kathleen M.,Natalia Y.K. (2004). A network of Optimization Approach for Improving 

Organizational Design: Carnegie Mellon University, School of Computer Science. Technical report. CMU-

ISRI-04-102. 

4. Hawkin, D.M: Yin, X (2002). A faster algorithm for ridge regression. Computational statistic and data 

analysis, 40, 253-262 

5. Khurana, M: Chaubey, Y.P: Chandra, S. (2012). Jackknifing the Ridge Regression Estimator: A Revisit: 

Technical Report 12(1) 1-19 

6. Madala, G.S. (1992). Introduction to Econometrics. Macmillan, New York. 

7. Singh, B: Chaubey, Y.P., Divivedi, T.D. (1986). An almost Unbiased r idge estimator. Sankya, B 48 342-

360. 

8. Nomura M. (1988). On the Almost Unbiased Ridge Regression Estimation, Communication Statistics-

Simulation, vol. 17(3), pp 729-743. 

9. Gruber, M.H.J. (1998). Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression 

Estimators, New York: Marcel Dekker. 

10. Nja, M.E. (2013). A new Estimation Procedure for Generalized Linear Regression Designs with Near 

Dependencies. Accepted for Publication. Journal of Statictical Econometric Methods 

11. Dorugade, A.V., Kashid, D.N. (2011). Parameter Estimation Method in Ridge Regression. Shivaji 

University, India. 

 
  



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

CALL FOR PAPERS 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.  There’s no deadline for 

submission.  Prospective authors of IISTE journals can find the submission 

instruction on the following page: http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

