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Abstract 
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compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms. 
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1. Introduction and Preliminaries 

To begin with we work in the category of fibrewise sets over a given set, called the base set. If the base 

set is denoted by B then a fibrewise set over B consists of a set X together with a function p : X → B, called the 

projection. For each point b of B the fibre over b is the subset Xb = p
−1

(b) of X; fibres may be empty since we do 

not require p to be surjective, also for each subset B* of B we regard XB* = p
−1

(B*) as a fibrewise set over B* 

with the projection determined by p. In fibrewise topology the term neighbourhood (nbd) is used in precisely the 

same sense as it is in ordinary topology. For a subset A of a topological space X, the closure (resp., interior) of A 

is denoted by Cl(A) (resp., Int(A)). For other notions or notations which are not defined here we follow closely 

James [11], Engelking [10], and Bourbaki [7]. 

Definition 1.1. [11] Let X and Y are fibrewise sets over B, with projections pX : X → B and pY : Y → B, 

respectively, a function φ : X → Y is said to be fibrewise if pY ∅ φ = pX, in other words if φ(Xb) ⊂ Yb for each 

point b of B. 

Note that a fibrewise function φ : X → Y over B determines, by restriction, a fibrewise function φB* : XB* 

→ YB* over B* for each subset B* of B. 

Definition 1.2. [11] Suppose that B is a topological space, the fibrewise topology on a fibrewise set X over B, 

mean any topology on X for which the projection p is continuous. 

Remark 1.3. [11] 

(a) The coarsest such topology is the topology induced by p, in which the open sets of X are precisely the 

inverse images of the open sets of B; this is called the fibrewise indiscrete topology. 

(b) The fibrewise topological space over B is defined to be a fibrewise set over B with a fibrewise topology. 

(c) We regard the topological product B×T, for any topological space T, as a fibrewise topological spaces over 

B, using the first projection, and similarly for any subspace of B×T. 

(d) The equivalences in the category of fibrewise topological spaces are called fibrewise topological 

equivalences. 

Definition 1.4. [11] The fibrewise function φ : X → Y, where X and Y are fibrewise topological spaces over B is 

called: 

(a) Continuous if for each point x ∈ Xb, where b ∈ B, the inverse image of each open set of φ(x) is an open set 

of x. 

(b) Open if for each point x ∈ Xb, where b ∈ B, the direct image of each open set of x is an open set of φ(x). 

Definition 1.5. [11] The fibrewise topological space X over B is called fibrewise closed if the projection p is 

closed function. 

Definition 1.6. [10] The function φ : X → Y is called proper function if it is continuous, closed, and for each y ∈ 

Y, φ
−1

(y) is compact set. 

Definition 1.7. A subset A of a topological space (X, τ) is called: 

(a) Pre-open [15] (briefly P-open) if A ♥ Int(Cl(A)), 
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(b) Semi-open [12] (briefly S-open) if A ♥ Cl(Int(A)), 

(c) γ-open [9] (= b-open [4]) (briefly γ-open) if A ♥ Cl(Int(A)) � Int(Cl(A)), 

(d) α-open [18] (briefly α-open) if A ♥ Int(Cl(Int(A))), 

(e) β-open [1](=semi-pre-open set [5]) (briefly β-open) if A ♥ Cl(Int(Cl(A))). 

The complement of a P-open (resp., S-open, γ-open, α-open, β-open) is called P-closed (resp., S-closed, 

γ-closed, α-closed, β-closed). The family of all P-open (resp., S-open, γ-open, α-open, β-open) are larger than τ 
and closed under forming arbitrary union, we will called this family near topology (briefly j-topology), where 

j∈{P, S, γ, α, β}. 

Definition 1.8. A function ϕ : X → Y is said to be P-continuous [15] (resp., S-continuous [12], γ-continuous [9], 

α-continuous [17], β-continuous [1]) if the inverse image of each open set in Y is P-open (resp., S-open, γ-open, 

α-open, β-open) in X. 

Definition 1.9. A function ϕ : X → Y is said to be P-open [15] (resp., S-open [12], γ-open [9], α-open [17], β-

open [1]) if the image of each open set in X is P-open (resp., S-open, γ-open, α-open, β-open) in Y. 

Definition 1.10. A topological space X is called P-compact [16] (resp., S-compact [8], γ-compact [9], α-compact 

[6, 13], β-compact [2]) space if each P-open (resp., S-open, γ-open, α-open, β-open) cover of X has a finite 

subcover. 

Definition 1.11. A topological space X is called locally P-compact [16] (resp., locally S-compact [8], locally γ-
compact [6], locally α-compact [6, 13], locally β-compact [2]) spaces if for every point x in X, there exists an 

open nbd U of x such that the closure of U in X is P-compact (resp., S-compact, γ-compact, α-compact, β-

compact) space. 

Definition 1.12. [10] For every topological space X* and any subspace X of X*, the function iX : X → X* define 

by iX(x) = x is called embedding of the subspace X in the space X*. Observe that iX is continuous, since i
1

X

−
(U) = 

X ∩ U, where U is open set in X*. The embedding iX is closed (resp., open) if and only if the subspace X is 

closed (resp., open). 

 

2. Fibrewise Near Compact and Locally Near Compact Spaces 

In this section, we introduce the following new concepts. 

Definition 2.1. The function φ : X → Y is called near proper (briefly j-proper) function if it is continuous, 

closed, and for each y ∈ Y, φ
−1

(y) is j-compact set, where j∈{S, P, γ, α, β}. 

For example, let (, τ) where τ is the topology with basis whose members are of the form (a, b) and (a, b) 

− N, N = {1/n ; n ∈ +
}. Define f : (, τ) → (, τ) by f(x) = x, then f is j-proper function, where j∈{S, P,γ,α,β}. 

If φ : X → Y is fibrewise and j-proper function, then φ is said to be fibrewise j-proper function, where 

j∈{S, P, γ, α, β}. 

Definition 2.2. The fibrewise topological space X over B is called fibrewise near compact (briefly j-compact) if 

the projection p is j-proper, where j∈{S, P, γ, α, β}. 

For example the topological product B×T is fibrewise j-compact over B, for all j-compact space T. For 

another example, the subset {(b, x) ∈ ×n
 : x ≤ b} of ×n

 is fibrewise j-compact over , where j∈{S, P, γ, 
α, β}. 

Definition 2.3. [3] A function ϕ : X → Y is called j-biclosed function, where X and Y are topological spaces, if 

it is maps j-closed set onto j-closed set, where j∈{S, P, γ, α, β}. 

Proposition 2.4. [3] Let X be a fibrewise topological space over B. Then 

(a) X is fibrewise closed iff for each fibre Xb of X and each open set O of Xb in X, there exist an open nbd W 

of b such that XW ⊂ O. 

(b) X is fibrewise j-biclosed iff for each fibre Xb of X and each j-open set O of Xb in X, there exists a j-open set 

W of b such that XW ⊂ O, where j∈{S, P, γ, α, β}. 

Useful characterizations of fibrewise j-compact spaces are given by the following propositions, where 

j∈{S, P, γ, α, β}. 

Proposition 2.5. The fibrewise topological space X over B is fibrewise j-compact iff X is fibrewise closed and 

every fibre of X is j-compact, where j∈{S, P, γ, α, β}. 

Proof. (⇒) Let X be a fibrewise j-compact space, then the projection p : X → B is j-proper function i.e., p is 

closed and for each b ∈ B, Xb is j-compact. Hence X is fibrewise closed and every fibre of X is j-compact, where 

j∈{S, P, γ, α, β}. 

(⇐) Let X be fibrewise closed and every fibre of X is j-compact, then the projection p : X → B is closed and it is 

clear that p is continuous, also for each b ∈ B, Xb is j-compact. Hence X is fibrewise j-compact, where j∈{S, P, 

γ, α, β}. 
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Proposition 2.6. Let X be fibrewise topological space over B. Then X is fibrewise j-compact iff for each fibre 

Xb of X and each covering Γ of Xb by open sets of X there exists a nbd W of b such that a finite subfamily of Γ 

covers XW, where j∈{S, P, γ, α, β}. 

Proof. (⇒) Let X be fibrewise j-compact space, then the projection p : X → B is j-proper function, so that Xb is 

j-compact for each b ∈ B. Let Γ be a covering of Xb by open sets of X for each b ∈ B and let XW = � Xb for each 

b ∈ W. Since Xb is j-compact for each b ∈ W ⊂ B and the union of j-compact sets is j-compact, we have XW is j-

compact. Thus, there exists a nbd W of b such that a finite subfamily of Γ covers XW, where j∈{S, P, γ, α, β}. 

(⇐) Let X be fibrewise topological space over B, then the projection p : X → B exist. To show that p is j-proper. 

Now, it is clear that p is continuous and for each b ∈ B, Xb is j-compact by take Xb = XW. By Proposition (2.4), 

we have p is closed. Thus p is j-proper and X is fibrewise j-compact, where j∈{S, P, γ, α, β}. 

These are special cases of well-known results of Theorems (3.7.2), (3.7.9), and Proposition (3.7.8) in 

[10], as in Propositions (2.7)-(2.9) below. 

Proposition 2.7. Let φ : X → Y be a j-proper, j-biclosed fibrewise function, where X and Y are fibrewise 

topological spaces over B. If Y is fibrewise j-compact then so is X, where j∈{S, P, γ, α, β}. 

Proof. Suppose that φ : X → Y is j-proper, j-biclosed fibrewise function and Y is fibrewise j-compact space i.e., 

the projection pY : Y → B is j-proper. To show that X is fibrewise j-compact space i.e., the projection pX : X → 

B is j-proper. Now, clear that pX is continuous. let F be a closed subset of Xb, where b ∈ B. Since φ is closed, 

then φ(F) is closed subset of Yb. Since pY is closed, then pY(φ(F)) is closed in B. But pY(φ(F)) = (pY ∅ φ)(F) = 

pX(F) is closed in B so that pX is closed. Let b ∈ B, since pY is j-proper, then Yb is j-compact. Now let {Ui; i ∈ 

Λ} be a family of j-open sets of X such that Xb ⊂ �i∈ΛUi. If y ∈ Yb, then there exist a finite subset M(y) of Λ 

such that φ
−1

(y) ⊂ �i∈M(y)Ui. Since φ is j-biclosed function, so by Proposition (2.4.b) there exist a j-open set Vy 

of Y such that y ∈ Vy and φ
−1

(Vy) ⊂ �i∈M(y)Ui. Since Yb is j-compact, there exist a finite subset C of Yb such that 

Yb ⊂ �y∈CVy. Hence φ
−1

(Yb) ⊂ �y∈Cφ
−1

(Vy) ⊂ �y∈C�i∈M(y)Ui. Thus if M = �y∈CM(y), then M is a finite subset 

of Λ and φ
−1

(Yb) ⊂ �i∈MUi. Thus φ
−1

(Yb) = φ
−1

(p
1

Y

−
(b)) = (pY ∅ φ)

−1
(b) = p

1

X

−
(b) = Xb and Xb ⊂ �i∈MUi so that 

Xb is j-compact. Thus pX is j-proper and X is fibrewise j-compact, where j∈{S, P, γ, α, β}. 

The class of fibrewise j-compact spaces is multiplicative, where j∈{S, P, γ, α, β}, in the following sense. 

Proposition 2.8. Let {Xr} be a family of fibrewise j-compact spaces over B. Then the fibrewise topological 

product X = B Xr is fibrewise j-compact, where j∈{S, P, γ, α, β}. 

Proof. Without loss of generality, for finite products a simple argument can be used. Thus, let X and Y be 

fibrewise topological spaces over B. If X is fibrewise j-compact then the projection p×idY : X×BY → B×BY ≡ Y 

is j-proper. If Y is also fibrewise j-compact then so is X×BY, by Proposition (2.7). 

A similar result holds for finite coproducts. 

Proposition 2.9. Let X be fibrewise topological space over B. Suppose that Xi is fibrewise j-compact for each 

member Xi of a finite covering of X. Then X is fibrewise j-compact, where j∈{S, P, γ, α, β}. 

Proof. Let X be fibrewise topological space over B, then the projection p : X → B exist. To show that p is j-

proper. Now, it is clear that p is continuous. Since Xi is fibrewise j-compact, then the projection pi : Xi → B is 

closed and for each b ∈ B, (Xi)b is j-compact for each member Xi of a finite covering of X. Let F be a closed 

subset of X, then p(F) = � pi(Xi ∩ F) which is a finite union of closed sets and hence p is closed. Let b ∈ B, then 

Xb = � (Xi)b which is a finite union of j-compact sets and hence Xb is j-compact. Thus, p is j-proper and X is 

fibrewise j-compact, where j∈{S, P, γ, α, β}. 

Definition 2.10. [3] A fibrewise function φ : X → Y, where X and Y are fibrewise topological spaces over B is 

called j-irresolute if for each point x ∈ Xb, where b ∈ B, the inverse image of each j-open set of φ(x) is a j-open 

set of x, where j∈{S, P, γ, α, β}. 

Proposition 2.11. Let φ : X → Y be a continuous, j-irresolute fibrewise surjection, where X and Y are fibrewise 

topological spaces over B. If X is fibrewise j-compact then so is Y, where j∈{S, P, γ, α, β}. 

Proof. Suppose that φ : X → Y is continuous, j-irresolute fibrewise surjection and X is fibrewise j-compact i.e., 

the projection pX : X → B is j-proper. To show that Y is fibrewise j-compact i.e., the projection pY : Y → B is j-

proper. Now, it is clear that pY is continuous. Let F be a closed subset of Yb, where b ∈ B. Since φ is continuous 

fibrewise, then φ
−1

(F) is closed subset of Xb. Since pX is closed, then pX(φ
−1

(F)) is closed in B. But pX(φ
−1

(F)) = 

(pX ∅ φ
−1

)(F) = pY(F) is closed in B, hence pY is closed. For any point b ∈ B, we have Yb = φ(Xb) is j-compact 

because Xb is j-compact and the image of a j-compact subset under j-irresolute function is j-compact. Thus, pY is 

j-proper and Y is fibrewise j-compact, where j∈{S, P, γ, α, β}. 

Proposition 2.12. Let X be fibrewise j-compact space over B. Then XB* is fibrewise j-compact space over B* for 

each subspace B* of B, where j∈{S, P, γ, α, β}. 

Proof. Suppose that X is fibrewise j-compact i.e., the projection p : X → B is j-proper. To show that XB* is 
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fibrewise j-compact space over B* i.e., the projection pB* : XB* → B* is j-proper. Now, it is clear that pB* is 

continuous. Let F be a closed subset of X, then F ∩ XB* is closed in subspace XB* and pB*(F ∩ XB*) = p(F ∩ XB*) 

= p(F) ∩ B* which is closed set in B*, hence pB* is closed. Let b ∈ B*, then (XB*)b = Xb ∩ XB* which is j-

compact set in XB*. Thus, pB* is j-proper and XB* is fibrewise j-compact over B*, where j∈{S, P, γ, α, β}. 

Proposition 2.13. Let X be fibrewise topological space over B. Suppose that XBi is fibrewise j-compact over Bi 

for each member Bi of a j-open covering of B. Then X is fibrewise j-compact over B, where j∈{S, P, γ, α, β}. 

Proof. Suppose that X is fibrewise topological space over B, then the projection p : X → B exist. To show that p 

is j-proper. Now, it is clear that p is continuous. Since XBi is fibrewise j-compact over Bi, then the projection pBi : 

XBi → Bi is j-proper for each member Bi of a j-open covering of B. Let F be a closed subset of X, then we have 

p(F) = � pBi(XBi ∩ F) which is a union of closed sets and hence p is closed. Let b ∈ B then Xb = � (XBi)b for 

every b = {bi} ∈ � Bi. Since (XBi)b is j-compact in XBi and the union of j-compact sets is j-compact, we have Xb 

is j-compact. Thus, p is j-proper and X is fibrewise j-compact over B, where j∈{S, P, γ, α, β}. 

In fact the last result is also holds for locally finite j-closed coverings, instead of j-open coverings. 

Proposition 2.14. Let φ : X → Y be a fibrewise function, where X and Y are fibrewise topological spaces over 

B. If X is fibrewise j-compact and idX×φ : X×BX → X×BY is j-proper and j-biclosed then φ is j-proper, where 

j∈{S, P, γ, α, β}. 

Proof. Consider the commutative figure shown below 

 

X×BX                                                     X×BY 

 

π2                                                                    π2 

 

φ 

X                                                           Y 

Figure 2.1. 

If X is fibrewise j-compact then π2 is j-proper. If idX×φ is also j-proper and j-biclosed then π2 ∅ (idX×φ) = φ ∅ 

π2 is j-proper, and so φ itself is j-proper, where j∈{S, P, γ, α, β}. 

The second new concept in this paper is given by the following: 

Definition 2.15. The fibrewise topological space X over B is called fibrewise locally near compact (briefly 

locally j-compact) if for each point x of Xb, where b ∈ B, there exists a nbd W of b and an open set U ⊂ XW of x 

such that the closure of U in XW (i.e., XW ∩ Cl(U)) is fibrewise j-compact over W, where j∈{S, P, γ, α, β}. 

Remark 2.16. Fibrewise j-compact spaces are necessarily fibrewise locally j-compact by taken W = B and XW = 

X. But the conversely is not true for example, let (X, τdis) where X is infinite set and τdis is discrete topology, 

then X is fibrewise locally j-compact over , since for each x ∈ Xb, where b � , there exists a nbd W of b and 

an open {x} ⊂ XW of x such that Cl{x} = {x} in XW is fibrewise j-compact over W. But X is not fibrewise j-

compact space over . Also the product space B×T is fibrewise locally j-compact over B, for all locally j-

compact space T, where j∈{S, P, γ, α, β}. 

Closed subspaces of fibrewise locally j-compact spaces are fibrewise locally j-compact spaces, where 

j∈{S, P, γ, α, β}. In fact we have 

Proposition 2.17. Let φ : X → X* be a closed fibrewise embedding, where X and X* are fibrewise topological 

spaces over B. If X* is fibrewise locally j-compact then so is X, where j∈{S, P, γ, α, β}. 

Proof. Let x ∈ Xb, where b ∈ B. Since X* is fibrewise locally j-compact there exists a nbd W of b and an open 

V ⊂ X
*

W
 of φ(x) such that the closure X

*

W
∩ Cl(V) of V in X

*

W
 is fibrewise j-compact over W. Then φ

−1
(V) ⊂ 

XW is an open set of x such that the closure XW ∩ Cl(φ
−1

(V)) = φ
−1

(X
*

W
∩ Cl(V)) of φ

−1
(V) in XW is fibrewise j-

compact over W. Thus, X is fibrewise locally j-compact, where j∈{S, P, γ, α, β}. 

The class of fibrewise locally j-compact spaces is finitely multiplicative, where j∈{S, P, γ, α, β}, in the 

following sense. 

Proposition 2.18. Let {Xr} be a finite family of fibrewise locally j-compact spaces over B. Then the fibrewise 

topological product X = B Xr is fibrewise locally j-compact, where j∈{S, P, γ, α, β}. 

Proof.  The proof is similar to that of Proposition (2.8). 

 

3. Fibrewise Near Compact (resp., Locally Near Compact) Spaces and Some Fibrewise Near Separation 

Axioms 

Now we give a series of results in which give relationships between fibrewise near compactness (or 

fibrewise locally near compactness in some cases) and some fibrewise near separation axioms which are 

idX× φ 
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discussed in [11, 14]. 

Definition 3.1. [11] The fibrewise topological space X over B is called fibrewise Hausdorff if whenever x1, x2 ∈ 

Xb, where b ∈ B and x1 ≠ x2, there exist disjoint open sets U1, U2 of x1, x2 in X. 

Definition 3.2. [14] The fibrewise topological space X over B is called fibrewise near regular (briefly j-regular) 

if for each point x ∈ Xb, where b ∈ B, and for each j-open set V of x in X, there exists a nbd W of b in B and an 

open set U of x in XW such that the closure of U in XW is contained in V (i.e., XW ∩ Cl(U) ⊂ V), where j∈{S, P, 

γ, α, β}. 

Definition 3.3. [14] The fibrewise topological space X over B is called fibrewise near normal (briefly j-normal) 

if for each point b of B and each pair H, K of disjoint closed sets of X, there exists a nbd W of b and a pair of 

disjoint j-open sets U, V of XW ∩ H, XW ∩ K in XW, where j∈{S, P, γ, α, β}. 

Proposition 3.4. Let X be fibrewise locally j-compact and fibrewise j-regular over B. Then for each point x of 

Xb, where b ∈ B, and each j-open set V of x in X, there exists an open set U of x in XW such that the closure XW 

∩ Cl(U) of U in XW is fibrewise j-compact over W and contained in V, where j∈{S, P, γ, α, β}. 

Proof. Since X is fibrewise locally j-compact there exists a nbd W* of b in B and an open set U* of x in XW* 

such that the closure XW*∩ Cl(U*) of U* in XW* is fibrewise j-compact over W*. Since X is fibrewise j-regular 

there exists a nbd W ⊂ W* of b and an open set U of x in XW such that the closure XW ∩ Cl(U) of U in XW is 

contained in XW ∩ U* ∩ V. Now XW ∩ Cl(U*) is fibrewise j-compact over W, since XW*∩ Cl(U*) is fibrewise j-

compact over W*, and XW ∩ Cl(U) is closed in XW ∩ Cl(U*). Hence XW ∩ Cl(U) is fibrewise j-compact over W 

and contained in V, where j∈{S, P, γ, α, β}, as required. 

Proposition 3.5. Let φ : X → Y be an open, j-irresolute fibrewise surjection, where X and Y are fibrewise 

topological spaces over B. If X is fibrewise locally j-compact and fibrewise j-regular then so is Y, where j∈{S, 

P, γ, α, β}. 

Proof. Let y be a point of Yb, where b ∈ B, and let V be a j-open set of y in Y. Pick any point x of φ
−1

(y). Then 

φ
−1

(V) is a j-open set of x in X. Since X is fibrewise locally j-compact there exists a nbd W of b in B and an open 

set U of x in XW such that the closure XW ∩ Cl(U) of U in XW is fibrewise j-compact over W and is contained in 

φ
−1

(V). Then φ(U) is an open set of y in YW, since φ is open, and the closure YW ∩ Cl(φ(U)) of φ(U) in YW is 

fibrewise j-compact over W and contained in V, where j∈{S, P, γ, α, β}, as required. 

Proposition 3.6. Let X be fibrewise locally j-compact and fibrewise j-regular over B. Let C be a j-compact 

subset of Xb, where b ∈ B, and let V be a j-open set of C in X. Then there exists a nbd W of b in B and an open 

set U of C in XW such that the closure XW ∩ Cl(U) of U in XW is fibrewise j-compact over W and  contained in 

V, where j∈{S, P, γ, α, β}. 

Proof. Since X is fibrewise locally j-compact there exists for each point x of C a nbd Wx of b in B and an open 

set Ux of x in XWx such that the closure XWx∩ Cl(Ux) of Ux in XWx is fibrewise j-compact over Wx and contained 

in V. The family {Ux; x ∈ C} constitutes a covering of the j-compact C by open sets of X. Extract a finite 

subcovering indexed by x1, …, xn, say. Take W to be the intersection Wx 1
∩ … ∩ Wx n

, and take U to be the 

restriction to XW of the union Ux 1
� … � Ux n

. Then W is a nbd of b in B and U is an open set of C in XW such 

that the closure XW ∩ Cl(U) of U in XW is fibrewise j-compact over W and contained in V, where j∈{S, P, γ, α, 

β}, as required. 

Proposition 3.7. Let φ : X → Y be a j-proper, j-irresolute fibrewise surjection, where X and Y are fibrewise 

topological spaces over B. If X is fibrewise locally j-compact and fibrewise j-regular then so is Y, where j∈{S, 

P, γ, α, β}. 

Proof. Let y ∈ Yb, where b ∈ B, and let V be a j-open set of y in Y. Then φ
−1

(V) is a j-open set of φ
−1

(y) in X. 

Suppose that X is fibrewise locally j-compact. Since φ
−1

(y) j-compact, by Proposition (3.6) there exists a nbd W 

of b in B and an open set U of φ
−1

(y) in XW such that the closure XW ∩ Cl(U) of U in XW is fibrewise j-compact 

over W and contained in φ
−1

(V). Since φ is closed there exists an open set U* of y in YW such that φ
−1

(U*) ⊂ U. 

Then the closure YW ∩ Cl(U*) of U* in YW is contained in φ(XW ∩ Cl(U)) and so is fibrewise j-compact over 

W. Since YW ∩ Cl(U*) is contained in V this shows that Y is fibrewise locally j-compact, where j∈{S, P, γ, α, 

β}, as asserted. 

Proposition 3.8. Let φ : X → Y be a continuous fibrewise function, where X is fibrewise j-compact space and Y 

is fibrewise Hausdorff space over B. Then φ is j-proper, where j∈{S, P, γ, α, β}. 

Proof. Consider the figure shown below, where r is the standard fibrewise topological equivalence and G is the 

fibrewise graph of ϕ. 
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X                                                    X×BY 

 

ϕ                                                              p×idY 

 

r 

Y                                                     B×BY 

Figure 3.1. 

 

Now G closed embedding, by Proposition (2.10) in [11], since Y is fibrewise Hausdorff. Thus G is j-proper. Also 

p is j-proper and so p×idY is j-proper. Hence (p×idY) ∅ G = r ∅ ϕ is j-proper and so φ is j-proper, since r is a 

fibrewise topological equivalence, where j∈{S, P, γ, α, β}. 

Corollary 3.9. Let φ : X → Y be a continuous fibrewise injection, where X is fibrewise j-compact space and Y 

is fibrewise Hausdorff space over B. Then φ is closed embedding, where j∈{S, P, γ, α, β}. 

The corollary is often used in the case when ϕ is surjective to show that ϕ is a fibrewise topological 

equivalence. 

Proposition 3.10. Let φ : X → Y be a j-proper fibrewise surjection, where X and Y are fibrewise topological 

spaces over B. If X is fibrewise Hausdorff then so is Y, where j∈{S, P, γ, α, β}. 

Proof. Since ϕ is a j-proper surjection so is ϕ×ϕ, in the following figure. 

 

 

∆ 
X                                                     X×BX 

 

ϕ                                                              ϕ×ϕ 

                                                          

∆ 
Y                                                     Y×BY 

Figure 3.2. 

 

The diagonal ∆(X) closed, since X is fibrewise Hausdorff, hence ((ϕ×ϕ) ∅ ∆)(X) = (∆ ∅ ϕ)(X) is closed. But (∆ 

∅ ϕ)(X) = ∆(Y), since ϕ is surjective, and so Y is fibrewise Hausdorff, where j∈{S, P, γ, α, β}, as asserted. 

Proposition 3.11. Let X be fibrewise j-compact and fibrewise Hausdorff space over B. Then X is fibrewise j-

regular, where j∈{S, P, γ, α, β}. 

Proof. Let x ∈ Xb, where b ∈ B, and let U be a j-open set of x in X. Since X is fibrewise Hausdorff there exists 

for each point x* ∈ Xb such that x* ∉ U an open set Vx* of x and an open set V*x* of x* which do not intersect. 

Now the family of open sets V*x*, for x* ∈ (X − U)b, forms a covering of (X − U)b. Since X − U is j-closed in X 

and therefore fibrewise j-compact there exists, by Proposition (2.6), a nbd W of b in B such that XW − (XW ∩ U) 

is covered by a finite subfamily, indexed by x
*

1
, …, x

*

n
, say. Now the intersection V = Vx

*

1
∩ …∩ Vx

*

n
 is an 

open set of x which does not meet the open set V* = V*x
*

1
� …� V*x

*

n
 of XW − (XW ∩ U). Therefore the 

closure XW ∩ Cl(V) of XW ∩ V in XW is contained in U, where j∈{S, P, γ, α, β}, as asserted. 

We extend this last result to 

Proposition 3.12. Let X be fibrewise locally j-compact and fibrewise Hausdorff space over B. Then X is 

fibrewise j-regular, where j∈{S, P, γ, α, β}. 

Proof. Let x ∈ Xb, where b ∈ B, and let V be a j-open set of x in X. Let W be a nbd of b in B and let U be an 

open set of x in XW such that the closure XW ∩ Cl(U) of U in XW is fibrewise j-compact over B. Then XW ∩ 

Cl(U) is fibrewise j-regular over W, by Proposition (3.11), since XW ∩ Cl(U) is fibrewise Hausdorff over W. So 

there exists a nbd W* ⊂ W of b in B and an open set U* of x in XW* such that the closure XW* ∩ Cl(U*) of U* in 

XW* is contained in U ∩ V ⊂ V, where j∈{S, P, γ, α, β}, as required. 

Proposition 3.13. Let X be fibrewise j-regular space over B and let K be a fibrewise j-compact subset of X. Let 

b be a point of B and let V be a j-open set of Kb in X. Then there exists a nbd W of b in B and an open set U of 

KW in XW such that the closure XW ∩ Cl(U) of U in XW is contained in V, where j∈{S, P, γ, α, β}. 

Proof. We may suppose that Kb is non-empty since otherwise we can take U = XW, where W = B − p(X − V). 

Since V is a j-open set of each point x of Kb there exists, by fibrewise j-regularity, a nbd Wx of b and an open set 

Ux ⊂ XWx of x such that the closure XWx ∩ Cl(Ux) of Ux in XWx is contained in V. The family of open sets {XWx 

G 
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∩ Ux; x ∈ Kb} covers Kb and so there exists a nbd W* of b and a finite subfamily indexed by x1, …, xn, say, 

which covers KW. Then the conditions are satisfied with 

W = W* ∩ Wx 1
∩ … ∩ Wx n  , U = Ux 1

� … � Ux n
. 

Corollary 3.14. Let X be fibrewise j-compact and fibrewise j-regular space over B. Then X is fibrewise j-

normal, where j∈{S, P, γ, α, β}. 

Proposition 3.15. Let X be fibrewise j-regular space over B and let K be a fibrewise j-compact subset of X. Let 

{Vi; i = 1, …, n} be a covering of Kb, where b ∈ B by j-open sets of X. Then there exists a nbd W of b and a 

covering {Ui; i = 1, …, n} of KW by open sets of XW such that the closure XW ∩ Cl(Ui) of Ui in XW is contained 

in Vi for each i, where j∈{S, P, γ, α, β}. 

Proof. Write V = V2 � … � Vn, so that X − V is j-closed in X. Hence K ∩ (X − V) is j-closed in K and so 

fibrewise j-compact. Applying the previous result to the j-open set V1 of Kb ∩ (X − V)b we obtain a nbd W of b 

and an open set U of KW ∩ (X − V)W such that XW ∩ Cl(U) ⊂ V1. Now K ∩ V and K ∩ (X − V) cover K, hence 

V and U cover KW. Thus U = U1 is the first step in the shrinking process. We continue by repeating the argument 

for {U1, V2, …, Vn}, so as to shrink V2, and so on, where j∈{S, P, γ, α, β}. Hence the result is obtained. 

Proposition 3.16. Let φ : X → Y be a j-proper, j-irresolute fibrewise surjection, where X and Y are fibrewise 

topological spaces over B. If X is fibrewise j-regular then so is Y, where j∈{S, P, γ, α, β}. 

Proof. Let X be fibrewise j-regular. Let y be a point of Yb, where b ∈ B, and let V be a j-open set of y in Y. 

Then φ
−1

(V) is a j-open set of the j-compact φ
−1

(y) in X. By Proposition (3.13), therefore, there exists a nbd W of 

b in B and an open set U of φ
−1

(y) in XW such that the closure XW ∩ Cl(U) of U in XW is contained in φ
−1

(V). 

Now since φW is closed there exists an open set V* of y in YW such that φ
−1

(V*) ⊂ U, and then the closure XW ∩ 

Cl(V*) of V* in XW is contained in V since 

Cl(V*) = Cl(φ(φ
-1

(V*))) = φ(Cl(φ
−1

(V*))) ⊂ φ(Cl(U)) ⊂ φ(φ
−1

(V)) ⊂ V. 

Thus Y is fibrewise j-regular, where j∈{S, P, γ, α, β}, as asserted. 
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