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Abstract 

Let K be a closed convex nonempty subset of a normed linear space E and let 
{ }N

iiT
1=  be a finite family of self 

maps on K such that T1 is a uniformly continuous uniformly hemicontractive map and T1(K) is a bounded set 

with φ≠= = ))(( 1 i

N

i TFF I , sufficient conditions for the strong convergence of an N-step iteration process to a 

fixed common point of the family are proved 

Keywords: key words, uniformly continuous, uniformly hemicontractive, finite family, common fixed point, 

Noor iteration, strong convergence. 

 

1. Introduction 

{ } ExfxfxEfxJ ∈∀==∈= ;,:)(
22*

Where E
*
 denotes the dual space of E and .,. denotes the 

generalized duality pairing between E and E
*
. The single-valued normalized duality mapping is denoted by j. A 

mapping 
*: EET → is called strongly pseudocontractive if for all Eyx ∈, , there exist 

)()( yxJyxj −∈− and a constant )1,0(∈K such that  

2
)1()(, yxkyxjTyTx −−≤−− . 

T is called strongly eractractivpseudocont−φ if for all Eyx ∈, , there exist )()( yxJyxj −∈−  and 

a strictly increasing function [ ) [ )1,01,0: →φ  with 0)0( =φ such that  

( ) .)(,
2

yxyxyxyxjTyTx −−−−≤−− φ  

It is called generalized strongly eractractivpseudocont−ψ or uniformly pseudocontractive if for all

Eyx ∈, , there exist )()( yxJyxj −∈−  and a strictly increasing function [ ) [ )1,01,0: →ψ  with 

0)0( =ψ  such that  

( )yxyxyxjTyTx −−−≤−− ψ
2

)(, . 

Every strongly eractractivpseudocont−φ  operator is a uniformly eractractivpseudocont−ψ  

operator with [ ) [ )1,01,0: →ψ  defined by sss )()( φψ = , but not conversely (see [13]). 

These classes of operators have been studied by several authors (see, for example [3], [4], [7], [13], [19], [23], 

[24] and references therein). 

If I denotes the identity operator, then T is strongly pseudocontractive, strongly eractractivpseudocont−φ , 

generalized strongly eractractivpseudocont−ψ if and only if )( TI − is strongly accretive, strongly 

accretive−φ , generalized strongly accretive−φ operators respectively. The interest in pseudocontractive 

mappings is mainly due to their connection with the important class of nonlinear accretive operators. In recent 

years, many authors have given much attention to approximate the fixed points of non-linear operators in Banach 

space using the Ishikawa and Mann iterative schemes (see, for example [8], [10], [11] and references therein). 

Noor [14] introduced the three-step iteration process for solving nonlinear operator equations in real Banach as 

follows; 

Let E be a real Banach space, K a nonempty convex subset of E and KKT →: , a mapping. For an arbitrary 

Kx ∈0 , the sequence { } Kx
nn ⊂
∞

=0
defined by  
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 ���� = �1 −∝�
�� +∝� �
�, 
� = �1 − ��
�� + �����, �� = �1 − ��
�� + �����, 
         (1)             

Where {∝�},{��}and {��}are three sequences in [0,1] is called the three-step iteration (or the Noor iteration). 

When �� = 0, then the three-step iteration reduces to the Ishikawa iterative sequence if  �� = �� = 0, then the 

three-step iteration reduces to the Mann iteration. 

Rafiq [21], recently introduced a new type of iteration-the modified three-step iteration process which is defined 

as follows;  

Let �� �� �� ∶ � → � be three mappings for any given �� ∈ �, the modified three-step iteration is defined by  ���� = �1 −∝�
�� +∝� ��
�, 
� = �1 − ��
�� + ������ �� = �1 − ��
�� + ������ 

         (2) 

Where {∝�},{��}and {��} are three real sequences staisfying some conditions. It is clear that the iteration 

scheme (2) includes Noor as special case. 

Glowinski and Le Tallec [5] used the three-step iteration schemes to solve elastoviscoplasiticty, liquid crystal 

and eigen-value problems. They have shown that the three-step approximation scheme performs better than the 

two-step and one-step iteration methods. Haubruge et al. [6] have studied the convergence analysis of three-step 

iteration schemes and applied these three-step iteration to obtain new splitting type algorithms for solving 

variational inequalities, separable convex programming and minimization of a sum of convex functions. They 

also proved that three-step iterations also lead to highly parallelized algorithms under certain conditions. Thus, it 

is clear that three-step schemes play an important part in solving various problems, which arise in pure and 

applied sciences. 

Recently, Xue and Fan [23] used the iteration procedure define by (2) in their theorem as stated below.      

Theorem 1.1 Let X  be a real Banach space and K be a nonempty closed convex subset of X. Let T1, T2 and T3 

be strongly pseudocontractive self maps of K with T1(K) bounded and  T1, T2 and T3  uniformly continuous. Let 

{��}  be defined by (2),where {��}, {��}and {��} are three real sequences in [0,1] such that (i)  �� , �� →0 ��  → ∞. (ii) ∑ ��∞�#� = ∞, and $���
 ∩ $���
 ∩ $���
 ≠ 0 then the sequence{��} converges strongly  to the 

common fixed point of  T1, T2 and T3 

Olaleru and Mogbademu [17] established the strong convergence of a modified Noor iterative process when 

applied to three generalized strongly eractractivpseudocont−φ ,  operators or generalized strongly 

accretive−φ operators in Banach space. Thus, generalizing the recent results of Fan and Xue (2009). In fact 

the stated and proved the following result. 

Theorem 1.2 let  E be �  real Banach space, K a nonempty closed convex subset of E, 

eractractivpseudocont−φ mappings such that  ����
 '� bounded. Let {��} be a sequence defined by (2) 

where {(�}, {��} and {��} are three sequences in [0,1] satisfiying the following conditions:  

 lim�→∞ (� =  lim�→∞ �� =  lim�→∞ �� = 0  

∞=∑
∞

≥0n

nα if F(T1)  F(T2)  F(T3) ≠ ∅, then the sequence {�� } converges to the unique common fixed 

points T1, T2 and T3 . 
 

Remark 1.1 In theorem 1.2, it is required that;  

All the 3 maps be generalized strongly eractractivpseudocont−φ  with the same function ϕ (which is 

rather strong function).    

All the 3 maps are required to be uniformly continuous (and thus bounded). 

Our purpose in this paper is to extend is to extend and generalized the result of Olaleru and Mogbademu (17) in 

the following ways: 

We introduce m-step iteration scheme  

We extend the result to any finite family of m-maps. 

The conditions of our theorems are less restrictive and more general than the one used in (17), (23). For instance, 

the demand that the three maps must be uniformly continuous is weakened by allowing some of the maps to be 

free.  
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1.1. The M-Step Iteration Process 

Let K be a non-empty convex subset of a normed linear space E and let T: K K be a map. For any 

given �� ∈ �. The m-step iteration process is defined by  
�,� = ��      
      
�,- = .1 − (�,-/�� +  (�,-  �
�,-0� ; ' = 1, 2, … , 4       
     
�,5 =  ���� = 
���,�     6ℎ898  + 1 = ' 4:; 4;  ≥ 0         (3) 

For a finite family 
m

iiT 1}{ =  of m-maps, the m-step iterative process becomes  


�,� = ��      
      
�,- = .1 − (�,-/�� +  (�,-  �5��0-
�,-0� ; ' = 1, 2, … , 4 

     
�,5 =  ���� = 
���,�                                                              (4) 

6ℎ898  + 1 = ' 4:; 4 =:9 '� 
 = >8� ? + 1
4 @ = 4 A + 1

4 B − A + 1
4 BC ,  ≥ 0  

In the case where at least one of the maps in the finite family has some asymptotic behaviour (satisfies an 

asymptotic condition) then the iterative process becomes: 

 
�,� = ��      
     
�,- = .1 − (�,-/�� +  (�,-  r

imT −+1 �
�,-0� ; ' = 1, 2, … , 4       
    
�,5 =  ���� = 
���,�                                                             (5) 

With n and m as in equation (4) and 9 = 1 − D �
5E  

We need the following lemma in this work: 

Lemma 1.1 [13] Let {F�}, {�� }, {��} be sequence of nonnegative numbers satisfying the conditions: 

,
0

∞=∑
∞

≥n

nβ �� → 0 as n→ ∞ and �� = 0{��}. Suppose that  

;)( 1

22

1 nnnnn γµψβµµ +−≤ ++   = 1, 2, … …  

Where H:[0,1)  [0,1) is a strictly increasing function with H(0) = 0. Then F� → 0 as  → ∞. 

 

2. Main Result 

2.1 Theorem 2.1 Let E be a normed linear space and K a nonempty closed convex subset of E, let {Ti}
m

i 1= be 

a finite family of self maps on the K such that : 

• T1(K), T2(K) are bounded 

• T1 is a uniformly continuous uniformly hemicontractive map on K 

• 
m

iF 1== I  F(Ti) ∅ where F(Ti) is the set of fixed points of Ti in K 

Starting with an arbitrary �� ∈ �, let {�� } be the iterative sequence defined by 

 
�,� = ��      
     
�,- = .1 − (�,-/�� +  (�,-  

imT −+1

�,-0�;  ' = 1, 2, … , 4 − 1       

       
�,5 =  ����                                                                      (6)  

Where {(�,-} ⊂ �0,1
  is a finite family of real sequence such that },...2,1{;0lim , miin
n

∈∀=
∞→
α  and 

.
0

, ∞=∑
∞

≥n

mnα Then, { nx } converges strongly to a common fixed point of the finite family.  

Proof  Let �∗ J $. It suffices to prove that: 

• {��} is bounded. 

• Let K� = L��
�,50� − ������L  Then K� → 0 as n→ ∞ 

•  �� converges to �∗. 

Now, since T1(K) is bounded, let D1 = M�� − �∗M + �NO�#�L��
�,50� −  �∗L <  ∞ . We establish by 

induction that M�� − �∗M  ≤  R�∀� ≥ 0. The case n = 0 is trivial, so assume it is true for n = v +1 M�T�� − �∗M ≤ .1 − (T,5/M�T − �∗M + (T,5L��
T,50� − �∗L ≤ D1   
Thus, M�� − �∗M  ≤  R�∀� ≥ 0 which gives {��} are bounded. 

More so, since T1(K), T2(K) and {��} are bounded sets, let  
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D2 = �NO�#�{M�� − �∗M + L��
�,50� −  �∗L  +  L��
�,50� − �∗L <  ∞  

Then, L
�,50� − ����L  ≤ (�,50� L�� − ��
�,50�L + (�,5L�� − ��
�,50�L  

≤ (�,50� �M�� − �∗M + L��
�,50� − �∗L + (�,5M�� − �∗M + L��
�,50� − �∗L) 

≤ �(�,50� + (�,5
 �M�� − �∗M + max {L��
�,50� − �∗L, L��
�,50� − �∗L}) 

≤ �(�,50� + (�,5
 D2  

Thus, 011, →− +− nmn xy  as ∞→n . 

Then by uniform continuity of T1, 0→nδ  as ∞→n . Thus proving (ii). 

Also, 

))(,( *

1

*

1

2
*

1 xxjxxxx nnn −−=− +++  

  ))(,())(,)(1( *

1

*

1,1,

*

1

*

1, xxjxyTxxjxx nmnmnnnmn −−+−−−= +−++ αα  

))(,()1( *

1

*

11,

*

1111,1,

*

1

*

, xxjxxTxxxTyTxxxx nnmnnnmnmnnnmn −−+−−+−−−≤ ++++−+ ααα

 

)()1( *

11

2
*

1,

*

1111,1,

*

1

*

, xxxxxxxTyTxxxx nnmnnnmnmnnnmn −−−+−−+−−−≤ ++++−+ ψααα

 

)()1(
2

1
])1[(

2

1 *

11

2
*

1,

2
*

1,

2
*

1

2
*2

, xxxxxxxxxx nnmnnnmnnnmn −−−+−++−+−−≤ ++++ ψαδαα

 

So that 

2
*

1,

2
*

1,,

2
*

1

2
*2

,

2
*

1 2
2

1
)1(2 xxxxxxxxxx nmnnnmnnmnnnmnn −+−++−+−−≤− ++++ αδαδαα

   )( *

11, xxnmn −− +ψα   

Hence, 
2

*

11,,

2
*

1

2

,

2
*

,, 2)1()21( xxxxxx nmnnmnnmnnnmnmn −−+−−≤−−− ++ ψαδααδαα  

(7) 
 

Since 

0, →inalpha as ,in ∞∀→ there exist Nn ∈0  such that 1)2(1
2

1
,0 <+−<≥∀ nmnn n δα   

)(
)2(1

2

)2(1)2(1

)1( 2
*

11

,

,

,

,2
*

,

2

,2
*

1 xxxxxx n

nmn

mn

nmn

nmn

n

nmn

mn

n −
+−

−
+−

+−
+−

−
≤− ++ ψ

δα

α

δα

δα

δα

α

  )(22)(2
2

*

11,,,,

2
*

1 xxDxx nmnnmnnmnmnn −−+++−≤ ++ ψαδαδαα  

Let 
*xxnn −=µ ; mnn ,2αβ = , 

2

, )( Dnmnn δαδυ ++= . Then, we have that  

)( 11

22

1 ++ −+≤ nnnnnn µψβυβµµ      (8) 

By Lemma, 0→nµ as ∞→n . Hence, the theorem. 

2.2 Theorem 2.2 

Let E be a normal linear space, K a non-empty closed convex subset of E, and let 
m

iiT 1}{ =  be a finite family 

of self maps on K such that: 

• T1(K) is bounded 

• T1is a uniformly continuous uniformly hemicontractive map on K 

• T2, …,Tm are bounded maps 

• φ≠= = )(1 i

m

i TFF I  where F(Ti) is the set of fixed points of Ti in K 

Starting with an arbitrary Kx ∈0 , let { nx } be the iterative sequence defined by Equation 6. Then, { nx } 
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converges strongly to a common fixed point of the finite family.  

Proof Let Fx ∈*
. Then 

))(,( *

1

*

1

2
*

1 xxjxxxx nnn −−=− +++  

  ))(,())(,)(1( *

1

*

1,1,

*

1

*

1, xxjxyTxxjxx nmnmnnnmn −−+−−−= +−++ αα  

))(,()1( *

1

*

11,

*

1111,1,

*

1

*

, xxjxxTxxxTyTxxxx nnmnnnmnmnnnmn −−+−−+−−−≤ ++++−+ ααα  

)()1( *

11

2
*

1,

*

1111,1,

*

1

*

, xxxxxxxTyTxxxx nnmnnnmnmnnnmn −−−+−−+−−−≤ ++++−+ ψααα  

)()1(
2

1
])1[(

2

1 *

11

2
*

1,

2
*

1,

2
*

1

2
*2

, xxxxxxxxxx nnmnnnmnnnmn −−−+−++−+−−≤ ++++ ψαδαα

 

Where 111,1 +− −= nmnn xTyTδ  ; So that 

2
*

1,

2
*

1,,

2
*

1

2
*2

,

2
*

1 2
2

1
)1(2 xxxxxxxxxx nmnnnmnnmnnnmnn −+−++−+−−≤− ++++ αδαδαα

   )( *

11, xxnmn −− +ψα   

 

So that  
2

*

11,,

2
*

1

2

,

2
*

,, 2)1()21( xxxxxx nmnnmnnmnnnmnmn −−+−−≤−−− ++ ψαδααδαα  (9) 

 

Now 

L
�,50� − ����L  ≤ (�,50� L�� − ��
�,50�L + (�,5L�� − ��
�,50�L  

≤ (�,50� �M�� − �∗M + L��
�,50� − �∗L + (�,5M�� − �∗M + L��
�,50� − �∗L) 

≤ �(�,50� + (�,5
 �M�� − �∗M + max {L��
�,50� − �∗L, L��
�,50� − �∗L}) 

Since T1(K) is bounded by the same argument in the prove of part (i) of theorem 2.1 we establish that { nx } 

is bounded. Since T2,…,Tn are bounded maps, we have that     { nT nx } is bounded. Let D2 = 

max {R�, �NO�#�M�5�� −  �∗M <  ∞ L
�,� − �∗L ≤ .1 − (�,�/M�� − �∗M + (�,�M�5�� − �∗M ≤ D� ∀�≥ 0    (10) 

Thus, { 1−mT 1,ny }is bounded. Let D3 = = max {R�, �NO�#�L�50�
�,� −  �∗L <  ∞ 

L
�,� − �∗L ≤ .1 − (�,�/M�� − �∗M + (�,�L�50�
�,� − �∗L ≤ D� ∀�≥ 0    (11) 

So, { 2−mT 2,ny }is bounded. Let D4 = max {R� , �NO�#�L�50�
�,� − �∗L <  ∞. Proceeding thus, we obtain 

that if { iny , }is bounded then { imT − iny , }is bounded, and    Di+2 = max {R� , �NO�#�L�50-
�,- −  �∗L <  ∞ 

so that  

L
�,-�� − �∗L ≤ .1 − (�,-��/M�� − �∗M + (�,-��L�50-
�,- − �∗L ≤ DX�� ∀�≥ 0  (12) 

Hence, {yn,i+1} and {Tm-1-iyn,i+1} are bounded. We have thus established that there exists a constant Do>0 

such that  

}.,...,2,1{},,max{ *

,

*

,

*

0 mxyTxyxxD iiniminn ∈∀−−−≥ − Thus, let D=2D0  

0)( ,1,1, →+≤− −+− Dxy mnmnnimn αα as ∞→n                   (13) 

So that 0→nδ  as 0→n .  There exists Nn ∈0 such that 0nn ≥∀  

)(
)2(1

2

)2(1)2(1

)1( 2
*

1

,

,

,

,2
*

,

2

,2
*

1 xxxxxx n

nmn

mn

nmn

nmn

n

nmn

mn

n −
+−

−
+−

+−
+−

−
≤− ++ ψ

δα

α

δα

δα

δα

α

  )(22)(2
2

*

11,,

2

,,

2
*

1 xxDxx nmnnmnnmnmnn −−+++−≤ ++ ψαδαδαα
 

Let ;*xxnn −=µ mnn ,2αβ = , 
2

, )( Dnmnn δαδυ ++= . Then, we have that  
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)( 11

22

1 ++ −+≤ nnnnnn µψβυβµµ                                        (14) 

By Lemma 1.1,  0→nµ as ∞→n . Hence, the theorem. 

A map EEA →:  is said to be accretive if Eyx ∈∀ ,  and 0>∀α  

yxAyAxyx −≥−+− )(α .                                                                                                 (15) 

If the above holds, Eyx ∈∀ ,  and }0|{:)( =∈=∈∀ AwEwAZy (the zero set of A), then A is said to 

be quasi-accretive. It is easy to see that T is hemicontractive if and if   A=I-T is quasi-accretive. We have the 

following theorem as an easy corollary to Theorem 2.2 and Theorem 2.1 

 

2.3 Theorem 2.3  

Let E be a normed liner space and let },...,2,1{;: miEEAi ∈→ be a finite family of maps such that: 

• The simultaneous nonlinear equations },...,2,1{;0 mixAi ∈= have a common solution Ex ∈*
 

• R(I-Ai) is bounded. 

• (I-A2), …, (I-Am) are bounded maps. 

Starting with an arbitrary Ex ∈0 ,define the iterative sequence { nx }by  

nn xy =0,  

miyAxy iniminninin ,...,1;)1()1( 1,1,,, =−+−= −−+αα  

        miyTx iniminnin ,...,1;)1( 1,1,, =+−= −++αα  

  1, += nmn xy   where in ≡+1  mod m;             (16) 

Where { in,α } )1,0(⊂  is a family of real sequences such that },...,2,1{;0lim , miin
n

∈∀=
∞→
α  and 

∑
∞

≥

∞=
0

,

n

mnα . Then, {xn} converges strongly to a solution of the simultaneous nonlinear equations. 

Proof:  Let Ti = I-Ai. Then Ti is a uniform continuous uniformly hemicontraction. Further,  

nn xy =0,  

miyAxy iniminninin ,...,1;)1()1( 1,1,,, =−+−= −−+αα  

        miyTx iniminnin ,...,1;)1( 1,1,, =+−= −++αα  

  1, += nmn xy   where in ≡+1  mod m;              

Thus, Theorem 2.2 applies and we have the stated results. Similarly 

 

Theorem 2.4 Let E be a normed linear space and let },...,2,1{;: miEEAi ∈→ be a finite family of 

maps such that: 

• The simultaneous nonlinear equations Aix= 0 {1,2,…,m} have a common solution Ex ∈*
that is 

φ≠= )(1 i

m

i AZI . 

• R(I-A1), R(I-A2) are bounded 

• Ai is a uniformly continuous quasi-accretive map 

Starting with an arbitrary ,0 Ex ∈ define the iterative sequence {xn} by equation (16). Then {xn} converges 

strongly to a solution of the simultaneous nonlinear equations. 

   

3. Conclusion\Remark 

A Theorem 2.1 extends theorem 1.2 in the following ways; in Equation (6) of Theorem 2.1, let m = 3, (�,� =(�, (�,� ≡ ��, (�,� ≡ ��, 
�,� ≡ 
�, 
�0� ≡ ��,  then we have Equation (2) of Theorem 1.2. Theorem 2.1 is 

proved for any finite family of maps, so if they are just three in the family, we have Theorem 1.2. More so, the 

conditions of Theorem 2.1. For instance, whereas the three maps in Theorem 1.2 are required to be uniformly 

continuous and uniformly pseudocontractive with the same function H, Theorem 2.1 requires that only one map 
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in the family satisfies such conditions. Also, Theorem 2.2 extends Theorem 1.2 in a similar manner. Hence, 

Theorem 2.1, Theorem 2.2 and their corollaries are rather interesting.    
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