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Abstract 

The purpose of this paper is to develop and obtain  a formula for the gamma function (according to science 

researchers) for different negative numbers using mathematical inference and Striling’s Asymptotic Formula.  

Compression between the previous formulae and developed formula for negative numbers such as  (-0.5,-1.5 ) 

have been conducted, so the results were identical.                                                          

                                                                                                       

Introduction  

In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial 

function, with its argument shifted down by 1, to real and complex numbers. 

The gamma function is a component in various probability-distribution functions, and as such it is applicable in 

the fields of probability and statistics, as well as combinatorics.  

The behavior for negative n is more intricate. Euler's integral does not converge for n ≤ 0, but the function it 

defines in the positive complex half-plane has a unique analytic continuation to the negative half-plane.                                                                                                                

The gamma function is nonzero everywhere along the real line, although it comes arbitrarily close to zero as n → 

∞.                                                                                                                                  

In fact, researchers need to deal with the gamma function for different numbers (integers or fractional) in 

resolving some of the issues facing them in their studies associated with this function, specially statistical 

distributions, for example (Weibull distribution and Beta distribution). Also the gamma function for positive 

numbers can be obtained using well-known mathematical formulae, but for negative numbers are unknown 

except some numbers, such as – 0.5 , - 1.5 , - 2.5 an so on. In this paper ,the development of gamma function for 

different negative numbers have been performed using mathematical inference and Striling’s Asymptotic 

Formula.  

 The literature review related with the gamma function for different numbers (integers or fractional). (Spiegel, 

1968,1986) dealt with the gamma function for numbers such as, – 0.5, - 1.5, - 2.5 and so on. Also the gamma 

function for different numbers is shown in figure 1 so that for helping to develop and obtain the gamma function 

for different negative numbers. Also( Abramowitz,1965) and( Tuma, 1970) viewed and dealt with calculation of 

the gamma function (Γn) for positive numbers and some negative numbers.(Buck,1978,1986,2013) dealt with 

the gamma function( Γn), n < 0 , for example  0.5 -Γ  ,  1.5 -Γ . 

 From this Literature Review, it can be seen that there is no dealt with negative numbers which differ from – 0.5, 

-1.5, -2.5  and so on. In this paper it has been dealt and calculated different negative numbers such as, -0.2 , -0.4 , 

-0.6, - 1.1, -1.9 and so on. Some particular values of gamma function are given, (www.google,2013).                       

The purpose of this paper was to develop and obtain a formula for the gamma function for different negative 

numbers, develop and create a table of gamma function for different negative numbers.                   

 

Materials And  Methods 

  In this section a brief discussion of methodology and Gamma function issues .The gamma function, if n is a 

positive integer can be written as follows :   

                    Γn = (n-1)!                                                                        (1) 

The gamma function is defined for all complex numbers except the  negative integers and zero. For complex 

numbers with a positive real part, it is defined via an improper integral that converges is given by formula (4).  

The behavior of Γ(n) for an increasing positive variable is simple :  it grows quickly — faster than an 

exponential function. Asymptotically as n → ∞, the magnitude of the gamma function is given by Stirling's 

formula                                                                                                       

                   Γn+1 ~ square root(2 π n(n/e) ,                                          (2)                                                                             

              here the symbol ~ means that the quotient of both sides converges to 1.                                              

The gamma function for different numbers is shown in figure 1 in order to explain some points about it. Also 

previous Gamma function formulae and Gamma function developed are presented as follows:   

 From mathematical references, figure 1 shows that there are different negative numbers for Gamma function 

without determination of mathematical formula for calculating it. This figure produced starting point and 

important issue of the development Gamma function values.   
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Figure 1 Gamma function for different values (Spiegel,1968, p 101) 

 

It can be seen that from figure1:  

Firstly: Positive Numbers:  

 As (n) approaches from zero, result that Γn becomes large and large, then it becomes indefinite for numbers 

near from zero. Mathematically, it can be declared, see (Tuma,1970). 

 From the formula 1, it can be seen that:  

 

  

 Secondly: Negative Numbers 

 1- For the numbers -1 < n < 0, Γn becomes negative or As it approaches from (-1) it becomes indefinite. Note 

that for case (- 0.5), Γn are between (-3) and (-4). 

 

2-   For the numbers -2 < n < 2, Γn becomes positive or As it approaches from (-2) it becomes indefinite too. 

Note that for case (- 1.5) , Γn are between (2) and (3). 

 

3- And so on for others numbers, Γn values are between negative and positive and it approaches more and more 

to zero. 

 With regard to the formulae of the gamma function account shall be as follows 

Mathematically and see (Abramowitz,1965 p156), the definition of the gamma function as follows:    

 

 

 As n< 0, (Buck, 1978, p299) stated:  
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According to (6) as an application, (Buck, 1978, p299) stated:  

 

So let –n = - m+1/2 

The general formula as follows: 

 From(7), it can be seen that the value of the gamma function for the numbers

the formation of a series of repeated substitutions for factorial that number to be up to the first term of the extent  

Γ0.5. So what about negative numbers that differ from the 

as follows:                                                                       

Through mathematical inference, can be obtained on the gamma function for any 

series of repeated substitutions for factorial to a negative number refer to

term is greater than zero and can be expressed by developed formula as follows:                             

-n+m calculate as a positive number of log series Striling,s Asymptotic Formula, see(Spiegel,1968):                  

 

Where Γ-n+m calculate as a positive number of log series Striling

 

Results AND DISCUSSION  

In this section, we have dealt with some particular values , 

different negative numbers. 

Firstly, some particular values to verify that developed formula (8) and compare it with formula (7) on two 

numbers (- 0.5, - 1.5) when m=0 as follows:                                                                                             

 

From these values, it can be seen that there is no dealt with negative numbers which differ from 

2.5  and so on and which are identical with negative numbers obtained by formula(8).
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According to (6) as an application, (Buck, 1978, p299) stated:   
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+m calculate as a positive number of log series Striling,s Asymptotic Formula, see(Spiegel,1968):                  

n+m calculate as a positive number of log series Striling
,
s Asymptotic Formula, see(Spiegel,1968):

In this section, we have dealt with some particular values , developed and create a table of gamma function for 

Firstly, some particular values to verify that developed formula (8) and compare it with formula (7) on two 

1.5) when m=0 as follows:                                                                                             

 

 
it can be seen that there is no dealt with negative numbers which differ from 

so on and which are identical with negative numbers obtained by formula(8).
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-2.5 and so on based on 

the formation of a series of repeated substitutions for factorial that number to be up to the first term of the extent  

2,5 and so on. Developed formula will be 

negative number to form a 

formula(6) to be up to a positive first 

term is greater than zero and can be expressed by developed formula as follows:                              

+m calculate as a positive number of log series Striling,s Asymptotic Formula, see(Spiegel,1968):                   

 

s Asymptotic Formula, see(Spiegel,1968):        

developed and create a table of gamma function for 

Firstly, some particular values to verify that developed formula (8) and compare it with formula (7) on two 

1.5) when m=0 as follows:                                                                                              

it can be seen that there is no dealt with negative numbers which differ from – 0.5, -1.5, -

so on and which are identical with negative numbers obtained by formula(8). 
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       Secondly, developed and create a table of gamma function for different negative numbers is shown on 

table 1.  

                                                                                                                                                                      

Table 1 the gamma function for different negative numbers (n<0) according to the formula(8)                                                                                    

9 

 
8 7 6 5 4 3 2 1 0 m 

n 

-11.79 -13.16 -14.94 -17.31 -20.63 -25.62 -33.94 -50.60 -100.59 ∞ 0.0 
-6.07 -6.35 -6.66 -7.01 -7.42 -7.88 -8.42 -9.04 -9.79 -10.69 - 0.1 
-4.42 -4.53 -4.64 -4.77 -4.90 -5.05 -5.22 -5.40 -5.60 -5.82 - 0.2 
-3.76 -3.80 -3.85 -3.90 -3.96 -4.02 -4.09 -4.16 -4.24 -4.38 - 0.3 
-3.55 -3.55 -3.56 -3.58 -3.59 -3.61 -3.63 -2.66 -3.69 -3.78 - 0.4 
-3.67 -3.64 -3.62 -3.60 -3.58 -3.57 -3.56 -3.54 -3.60 -3.54 - 0.5 
-4.19 -4.11 -4.04 -3.98 -3.92 -3.86 -3.82 -3.77 -3.73 -3.70 - 0.6 
-5.52 -5.32 -5.14 -4.98 -4.83 -4.70 -4.58 -4.46 -4.37 -4.28 - 0.7 
-9.68 -8.94 -8.31 -7.78 -7.32 -6.91 -6.57 -6.26 -5.98 -5.74 - 0.8 
-100.4 -50.45 -33.80 -25.48 -20.50 17.18 - -14.81 -13.10 -11.67 -12.57 - 0.9 

10.81 12.19 13.96 16.33 19.65 24.63 32.95 49.61 99.59 ∞ - 1.0 
5.10 5.38 5.69 6.05 6.45 6.91 7.95 8.08 8.82 9.72 - 1.1 
3.43 3.54 3.65 3.78 3.92 4.07 4.24 4.42 4.63 4.85 - 1.2 
2.71 2.76 2.86 2.87 2.93 2.10 3.07 3.15 3.24 3.33 - 1.3 
2.38 2.40 2.42 2.45 2.48 2.51 2.54 2.58 2.62 2.66 - 1.4 
2.37 2.30 2.30 2.31 2.31 2.32 2.32 2.34 2.35 2.36 - 1.5 
2.48 2.45 2.42 2.40 2.37 2.36 2.34 2.33 2.32 2.31 - 1.6 
3.09 2.99 2.91 2.83 2.76 2.70 2.65 2.60 2.55 2.51 - 1.7 
5.12 4.75 4.44 4.18 3.96 3.76 3.59 3.44 3.31 3.19 - 1.8 
50.47 25.48 17.16 13.00 10.51 8.85 7.67 6.79 6.11 5.56 - 1.9 

 
Conclusion 

In this paper, from literature review, there are no studies dealt with the gamma function for negative numbers 

vary, for example, -0.5, -1.5, and so on. In this paper, a formula was developed for gamma function for different 

negative numbers, for example, -0.2 -0.4 , -0.6, - 1.1, -1.9, and so on. Developed and create a table of gamma 

function for different negative numbers, which can be used by researchers interested in. Also compression 

between the previous formulae and developed formula of gamma function for negative numbers, for example (-

0.5,-1.5) have been conducted, so the results were identical. 
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