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Abstract 

Let Dn be the dihedral group , C2 be the cyclic group of order 2 and Dnh is the direct product group of Dn and C3 

(i.e. Dn×C3) . Let  cf(Dn ×C3,Z) be the abelian group of Z-valued class functions of the group Dn ×C3 . The 

intersection cf(Dn ×C3,Z) with the group of all generalized characters of Dn ×C3 which is denoted by R (Dn ×C3) 
, is a normal subgroup of cf(Dn ×C3,Z) denoted by 

R (Dn ×C3) , then factor group cf(Dn ×C3,Z)/ R (Dn ×C3) is a finite abelian  group denoted by K(Dn ×C3) . 
        The problem of determining the cyclic decomposition of the group 
 K(Dn ×C3) seem to be untouched . 

         The  aim of this paper is to find the cyclic decomposition of this group.   

We find that when n is an odd number such that 
1
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=∏  , where all 'ip s  are distinct  primes , then  
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( ) ( ) ( )1 21 1 ........ 1 2
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i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C4

( ) ( ) ( )1 22 1 1 ........ 1 1

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C2 ⊕ C8. 

 

 

1. Introduction 

Let G be a finite group ,two elements of G are  said to  be   ΓΓΓΓ- conjugate  if the cyclic subgroups they generate 
are conjugate  in G, this  defines  an equivalence  relation on G .Its classes are called  ΓΓΓΓ- classes . The  Z - valued  
class  function on the group  G , which is constant on the  ΓΓΓΓ- classes  forms  a finitely generated abelian group 
cf(G,Z) of a rank equal to the number of          ΓΓΓΓ- classes . 
        The intersection of cf(G,Z) with the group of all generalized characters of G ,R(G) is a normal subgroup of  

cf(G,Z) denoted by )(GR ,then cf(G,Z)/ )(GR is a finite abelian factor group which is denoted by K(G).   

        Each element in )(GR can be written as u1θ1+ u2θ2+……+ u l θ l , where  l  is the number of ΓΓΓΓ - classes , u1 

, u2 , …… , u l ∈Z  and  θ i = ∑
∈ )/)((

)(
QQGal

i

iχσ

χσ
 , where iχ  is an irreducible character of the group G and 

σ  is any element in Galios group ( )( )QQGal i /χ . Let ≡*(G) denotes the ll ×  matrix which corresponds to 

the θ i 's  and columns correspond to the ΓΓΓΓ- classes of G .The matrix expressing  )(GR  basis in terms of the 
cf(G,Z) basis is ≡*(G) . 
        We can use the theory of invariant factors to obtain the direct sum of the cyclic Z-module of orders the 
distinct invariant factors of ≡*(G) to find the cyclic decomposition of K(G).In1982 M.S.Kirdar[4] studied the 
K(Cn).In 1994 H.H. Abass[2]studied the K(Dn) and found ≡*(Dn).In 1995 N.R. Mahamood [5] studied the factor 

group cf(Q2m,Z) / R (Q2m).In 2005 N.S. Jasim [6] studied the factor group cf(G,Z)/ )(GR  for the special linear 
group SL(2,p). 
       In this paper we study K(Dn ×C3 ) and find ≡*( Dn ×C3 ) when n is an odd number . 

 

2. Preliminaries 

        In this section we review definitions and some results which will be used in later section. 
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Definition (1.1):[1] 

        The  set  of  all  ll ×   non-singular  matrices  over  the  field  F which forms a group under the  operation 
of  the matrix  multiplication is called the general linear group of the dimension l  over the field F, denoted by 
GL ( l ,F). 
Definition (1.2): [1] 

         A matrix  representation  of  a group G is a group homomorphism T of G into GL ( l ,F) , l  is called the 

degree of matrix representation T . 
Definition (1.3): [1] 

        The trace of an ll ×  matrix is the sum of the main diagonal elements , denoted by tr(A) . 
Definition (1.4): [3] 

        A matrix  representation T: G→GL ( l , F)  is  said  to be reducible if there exists a non-singular matrix A 
over F such that: 

A 1−  T (g) A= 







)(
)()(

2

1

gTo

gEgT
  , for all g∈G. 

        Where T 1 (g) , T 2 (g) are matrices of  representations T 1  and T 2  of a group over F of the dimension r×r, 

s×s respectively and E(g) is a matrix of the dimension r×s such that     0< r < l   and  r+s= l . If  no such  
reducible  matrix  exists  then T  is called an irreducible matrix representation. 
Theorem (1.5):[1] 

        Let T 1 : G1 → GL(V1) and T2: G2 → GL(V2) be two irreducible  representations of the groups G1 and G2 

respectively, then  T 1 ⊗ T2 is irreducible  representations of the group G 1� G2 . 
Definition (1.6): [3] 

        Let T be a matrix representation of a group G over the field F, the  character χ of a matrix representation T 
is the mapping χ: G→F defined by  χ(g)=Tr(T(g)) for all g∈G  where Tr(T(g)) refers to the trace of the matrix 
T(g) and χ(1) is the degree of  χ . 
Remark (1.7):  

(i)A finite group G has a finite number of conjugacy classes and a finite number of distinct irreducible character, 
the group character of a group representation is constant on a conjugacy class , the values of irreducible 
characters can be written as a table whose columns are the conjugacy class and rows the value of irreducible 
characters on each conjugacy class , this table of the group G, denoted by ≡(G). 

(ii) If G = Cn =<r > is the cyclic group of order n generated by r  .If ω = e n
iπ2

 is the primitive n-th root of 

unity , the 
      CLα      1      r      2r  …………   1−nr  

    αCL      1     1     1 …………   1 

  )( αCCG     n    n     n …………   n 

≡(Cn)= χ 1     1    1     1 …………   1 

 χ 2     1   ω    ω 2  …………  ω 1−n  
 χ 3     1   ω 2     ω 4  …………  ω 2−n  
 M     M    M     M  O    M  

 χ n     1   ω 1−n     ω 2−n  …………   ω 

 

Definition (1.8):[3] 

        Let  χ and ψ as characters of a group G, then : 
1. The sum of characters is defined by: 
     (χ+ψ)(g) = χ(g)+ψ(g)           , for all g∈G 
2. The product of characters is defined by :   (χ.ψ)(g) = χ(g).ψ(g)  , for all g∈G. 
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Theorem (1.9):[3] 

        Let T 1 : G1→GL(n,K) and T2: G2→GL(m,K) are two  matrix representations of the groups G1 and G2  , χ

and χ  be two characters of T 1 and T2 respectively, then the character of  T 1 ⊗ T2 is χ χ . 
Definition (1.10):[1] 

     A rational valued character θ of G is a character whose values are in the set of integers Z, which is θ(g) ∈ Z, 
for all g ∈ G . 
Proposition (1.11):[ 4] 

        The rational valued characters θ i = ∑
∈ )/)((

)(
QQGal

i

iχσ

χσ
 form basis for R(G), where  χ i  are the  

irreducible  characters  of  G  and  their  numbers  are  equal  to  the number of all distinct Γ- classes of G. 
 

2. The factor group K(G) 

        In this section , we study the factor K(G) and discuss the cyclic decomposition of the factor groups K(Cn) 
and K(Dn) . 
Definition (2.1):[4] 

        Let M be a matrix with entries in a principal ideal domain R ,  a k-minor of  M  is the determinate of  k×k  
sub matrix preserving rows and columns order. 
Definition (2.2):[4] 

        A k-th determinant divisor of M is the greatest common divisor  
(g.c.d) of all the k-minors of M . This is denoted by D k (M). 
 Lemma (2.3):[4] 
        Let M, P and W be  matrices with  entries  in  a principal  ideal  domain R , if P and W are  invertible 
matrices, then D k (P M W)= D k (M) modulo the group of unites of R. 
Theorem (2.4):[4] 
        Let M be an l ×l  matrix entries in a principal ideal domain R, then there exists matrices P and W  such that: 

1- P and W are invertible. 
2- P M W = D. 
3- D is diagonal matrix. 
4- if we denote D ii  by d i  then there exists a natural number m ;  

    0 ≤ m ≤ l  such that  j > m  implies d j  = 0 and  j ≤ m  implies d j ≠ 0     

     and  1 ≤ j ≤ m   implies d j | d 1+j . 

Definition (2.5):[4] 
        Let M be a matrix with entries in a principal ideal domain R be equivalent to a matrix D=diag {d 1 ,d 2 , … 

,d m ,0, 0, … ,0}such that d j | d 1+j  for 1 ≤  j < m . 

       We  call  D the invariant factor  matrix of  M  and  d 1 , d 2 , … ,d m  the invariant factors of M. 
Theorem (2.6):[4] 

        Let  K be a finitely generated module over a principal ideal domain R, then K is the direct sum  of a cyclic 
submodules with an annihilating ideal  <d 1 >, <d 2 >, … ,<d m >, d j | d 1+j  for  j = 1, 2, … , K-1. 

Proposition(2.7):[4] 

        Let A and B be two non-singular matrices of the rank n and m respectively, over a principal ideal domain R 

. Then the invariant factor matrices of A ⊗ B equals D(A)⊗D(B) , where D(A)and D(B) are the invariant 
factor matrices of A and B respectively . 
Theorem(2.8):[4] 

        Let  H  and  L  be  p1-group and p2-group respectively ,where p1 and  p2 are distinct primes . Then , ≡*(H × 

L) = ≡*(H) ⊗ ≡*(L) . 
Remark (2.9):[4] 

1

2 1 2
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        Suppose cf(G,Z) is of the rank l  , the matrix expressing the R (G) basis in terms of the cf(G,Z) = Z l  
basis is ≡*(G). 
        Hence by theorem (2.4),we can find two matrices P and Q with                  a determinant ± 1 such that P. 
≡

*(G).Q =D(≡*(G))= diag{d1,d2,………,d l }, 

di = iD± (≡*(G))/ 1−± iD (≡*(G)) . 

this yields a new basis for R (G) and Cf(G,Z),{v1,v2,…….., v l }and 

{u1,u2,…….., u l } respectively with the property v j = d j u j . 

        Hence by theorem (2.6) the  Z-module  K(G) is the direct sum of cyclic submodules with annihilating ideals  
<d 1 >, <d 2 >, … ,<d l >. 

Theorem(2.10) :[ 4] 

        Let  p  be a prime number , then : 

K(G) = ∑
=

⊕
s

i

di
C

1
 such that di = iD± (≡*(G))/ 1−± iD (≡*(G)) . 

Theorem (2.11):[4] 

│K(G)│ = det (≡*(G))  
Proposition (2.12):[4]  

        The rational valued characters table of the  cyclic group C sp  of the rank s+1 where p is a prime number 

which is denoted by (≡*(C sp )), is given as follows: 

 
Γ-classes 

 
[1] [r

1−sp
] [r

2−sp
] [r

3−sp
] 

 

 
… 
 

 

  [r
2p ] 

 
[r p ] 

 
[r] 

θ  p 1−s (p-1) - p 1−s  0 0 … 0 0 0 

θ 2  p 2−s (p-1) p 2−s (p-1) - p 2−s  0 … 0 0 0 

θ 3  p 3−s (p-1) p 3−s (p-1) p 3−s (p-1) - p 3−s  … 0 0 0 

  ┇ ┇ ┇ ┇ ┇ O  ┇ ┇ ┇ 

θ 1−s  p(p-1) p(p-1) p(p-1) p(p-1) … p(p-1) -p 0 

θ s  p-1 p-1 p-1 p-1 … p-1 p-1 -1 

θ 1+s  1 1 1 1 … 1 1 1 

  where its rank s+1 represents the number of  all distinct Γ-classes. 
 

Example (2.13): 

        Consider the  cyclic group C49  by  using  table (2.3), we can find the rational valued characters table of C49  
as follows:  
 
    ≡*(C49) = ≡*(C 27

) =  

Γ-classes [1] [ 7r ] [ r ] 

θ1  42 -7 0 

θ 2  6 6 -1 

θ 3  1 1 1 

 

1
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Remark (2.14): 

        In  general, for  n = p 1
1
α  . p 2

2
α . … . p m

m

α   where  g.c.d (p i ,p j ) = 1, if  i ≠ j  , p i 's are prime numbers and 
+∈ Ziα , then we have the following formula : 

≡
*(Cn) = ≡*(C 1

1
αp ) ⊗ ≡*(C 2

2
αp ) ⊗ … ⊗ ≡*(C m

mPα ) . 

 

Proposition (2.14):[4] 

          If p is a  prime number , then  
D(≡*(Cp

s) ) = diag{ps ,ps-1 ,……,p,1}. 
Remark (2.15):[4] 

        For  n = p 1
1
α  . p 2

2
α . … . p m

m

α   where  p i 's are distinct primes and +∈ Ziα , then :    D(≡*(C n )) = D(≡*(C

1
1
αp )) ⊗D(≡*(C 2

2
αp )) ⊗ … ⊗ D(≡*(C m

mPα ) ) .        

 

Theorem(2.16) :[4] 

        Let  p  be a prime number , then : 

K(Cp
s) = ∑

=

⊕
s

i
PiC

1
 . 

Example(2.17):- 

K(C25) = K(C 25
)=C 5 ⊕  C 25

 

Proposition(2.18):[4] 

        Let  n =∏
=

k

i

a

i
iP

1

,where p i 's  are distinct primes and +∈ Zai ,then : 

K(Cn) = ( )( ) ( ) .1

1
`1

timeaCK
k

j

ij
j

k

i
P ia

i

















+⊕⊕ ∏∑ ∑
=

≠=

    

 
                            
Example(2.19) : 

  
        To find the cyclic decomposition of group K(C15435)   

K(C15435)  = K(C 2 33.7.5)  =  ( ) ( )2 23 3
K C K C⊕ ⊕L L
144444424444443

  

                                                  (3+1).(1+1) times 

                                     ⊕ ( ) ( )3 37 7
K C K C⊕ ⊕L L
144444424444443

 

                                                  (2+1).(1+1) times                                                      

                                     ⊕ ( ) ( )
44444 344444 21

LL 55 CKCK ⊕⊕  

                                                  (2+1).(3+1) times 

                                =
8

1i =
⊕ K(C3

2)
6

1i =
⊕ K(C 37 )

12

1i =
⊕ K(C 5) 
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                                = 
8

1i =
⊕ C3

2
8

1i =
⊕ C 3

6

1i =
⊕ C 37

6

1i =
⊕ C 27

6

1i =
⊕ C 7

12

1i =
⊕ C 5 . 

 

Definition (2.20):[3] 
        For a fixed positive integer n 3≥  ,the dihedral group Dn is a certain  non- abelian group of the order 2n . In 
general can write it as: 

Dn={
jS

kr :0 ≤ k ≤ n-1 , 0 ≤ j ≤ 1} 

which has the following properties : 
nr =1 , 2S  =1 , kk rSSr −− =1  

 Definition Dn�C3 (2.21) :[3 ] 

        The group Dn�C3 is the direct product group  Dn�C3 ,where C3 is a cyclic group of the order 3 consisting 

of elements {1, 
*r ,

*r }with (
*r )2=1 .It is order 4n . 

So the group Dn�C2  is the direct product group Dn�C3  , then the order of  Dn�C3 is 6n . 
 
 

Lemma (2.22):[2] 
The rational valued characters table of Dn when n is an odd number is given as follows: 
 
 
 
 
           
              ≡*(Dn)=  
 
 

       Where l  is the number of  Γ- classes of Cn . 
Example (2.23): 

         To  find the rational valued characters table of  D49,  From example (2.13), we obtain ≡*(C49 ) and by using 
lemma (2.22) , we have. 
 
 
          
≡

* (D49) = ≡
* (D

27
) = 

                                                               Table (2.10) 
                     
 

                           = 
 
 

 

 
 

 

 

Proposition(2.24):[2] 

          Γ- classes of  Cn  [S] 

θ   
≡

*(Cn) 
   
  1      1      1     …         1     1 

0 

┇ ┇ 

θ 1−l  0 

θ l  1 

θ 1+l  1     1      1     …          1     1     -1 

Γ-classes  [1]         [ 7r ]          [ r ] [S] 

    θ1   
≡

*(C 27 ) 

   
   1             1             1   

0 

    θ 2  0 

    θ 3  1 

    θ 4     1             1             1      -1 

Γ-classes [1] [ 7r ] [ r ] [S] 

    θ1   42 -7 0 0 

    θ 2  6 6 -1 0 

    θ 3  1 1 1 1 

    θ 4  1 1 1 -1 

1
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D(≡*(Dn))=
( )( )










−

≡ ∗

20
0nCD

Where D(≡*(Dn)) and D(≡*(Cn)) 

 are the invariant factors matrices of ≡*(Dn) and ≡*(Cn) respectively . 
Theorem(2.25) :-[ 7] 

             If n is an odd number ,then : 
≡*(Dnh) = ≡*(Dn) ⊗ ≡*(C2) . 

Theorem(2.26) :- [7] 

        For a fixed positive odd integer n such that 
m

mpppn ααα L2
2

1
1 ⋅=  where mppp ,....,, 21  are 

distinct primes and  
1

α , 2α ,.., mα  are positive integers, then ; 

K(Dnh)=
2

1i =
⊕  K(Dn)

( ) ( ) ( )1 21 1 1 2

1

m

i

α α α+ ⋅ + + −

=
⊕
L

    C2 ⊕  K(C4) .  

Example(2.27):-  

        To find K(D15435h )  

K(Dnh)=
2

1i =
⊕  K(Dn)

( ) ( ) ( )1 21 1 1 2

1

m

i

α α α+ ⋅ + + −

=
⊕
L

    C2 ⊕  K(C4) . 

K(D15435h)  = K(D 2 33.7.5h) = 
2

1i =
⊕ K(D 2 33.7.5) 

22

1i =
⊕ C2 ⊕K(C4) . 

                 = 
16

1i =
⊕  C3

2
16

1i =
⊕ C 3

12

1i =
⊕ C 37

12

1i =
⊕ C 27

12

1i =
⊕ C 7

24

1i =
⊕ C 5

24

1i =
⊕ C2 ⊕ C4 . 

 
3. The Main Results 

        In this section we find the general form of the rational valued characters table of the group (�� × �� )   
(when n is an odd number) . 
Theorem 

If n is an odd number then (�� × �� ) =≡∗ (��) ×≡∗ (��) 
We denote by �
to the irreducible characters of �� an �
 to the rational valued characters of �� 
Now  
 
                                 ≡ (��)= 
    
 
Where � = ���
 /�  Γ− ����� 

�1� ��� 
��∗ 2 -1 ��∗ 1 1 

And            ≡∗ (��)= 
Every element ��  in the group �� × �� can be written as follows  �� =(�� , � ∗ ) where ��"�� ,h=1,2,3,…,2n 
And � ∗ "�� ,K=1,2,3 
And each irreducible character �(
,#) of the group �� × �� can be written as �(
,#)=�
 .�#  where  i=1,2,…,�$�

� + 4 
Then  
 

��'  �1� ��� �� ��∗ 1 1 1 ��∗ 1 � �� ��∗ 1 �� � 
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�(
,#)(�� )=

()
))
))
*
))
))
)+

�
(��)    ,- . = 1 �/0 1 = 1,2,3 �
(��)   ,- . = 2 �/0 1 = 1 �
(��)�   ,- . = 2 �/0 1 = 2 �
(��)��   ,- . = 2 �/0 1 = 3 �
(��)    ,- . = 3 �/0 1 = 1 �
(��)��   ,- . = 3 �/0 1 = 2 �
(��)     ,- . = 3 �/0 1 = 3 4)
))
))
5
))
))
)6

 

If we denote by �(
,#) to the rational valued characters of the group �� × �� ,then we have  

(i) �(
,#) =∑ 89�(
,�):  +;<=>?(@(A(B,C)D ) ∑ 89�(
,�):  ;<=>?(@(A(B,E)D )  

Then we have  �(
,�)(�� )= ∑ 89�(
,�):(�� )  +  ∑ 89�(
,�):(�� )  ;<=>?(@(A(B,E)D );<=>?(@(A(B,C)D )  

 

Now we have the following Cases 

(a) If k=1 ,then  �(
,�)(�� )=  ∑ 89�
(��):
;<=>?(DFA(B,C)9GHI:J

D
+    ∑ 89�
(��):

;<=>?(DFA(B,E)9GHI:J
D

=�
(��) .2 

= �
(��). ��∗(1∗) 

               (L)  if k=2 

                        �(
,�)(��  )=∑ �
(��)�;<=>?(DMAB9GHI:N
D

 +∑ �
(��)��
;<=>?(DMAB9GH :N

D
 

=∑ �
(��)(� + ��);<=>?(DMAB9GH:N
D ) =�
(��)-1=�
(��).��∗(�) 

(ii)   �(
,�) =∑ 8(�(
,�));<=>?(DMA(B,O)N
D )  then �(
,�)(�� ) =∑ 8(�(
,�)(�� ));<=>?(@(P(B,O)(QHI)/@  

Then we have the following cases. 

(a) If k=1 �(
,�)(�� )=∑ 8(�
(��));<=>?(DMAB9GH:N
D ) = �
(��) 

= �
(��). 1 = �
 . (��). ��∗(1∗) 

 

(b) If k=2 �(
,�)(�� ) =∑ 8(�
(��));<=>?(DMAB9GH:N
D ) =�
 . (��). ��( �). 

 

From (t) and (ii) we have  

 �(
,#)=�
   . �#∗   for all i=1,2…,(n-2)/2  +4 �/0 . = 1,2,3 . Rℎ�/ T� ℎ�U�  ≡∗(�� × ��)= ≡∗ (��) ⊗≡∗ (��). 

   
Theorem(3.3) :- 

        The cyclic decomposition of the group K(Dnh×C2) , when n an odd number such that  
1

i

m

i

i

n p α

=

=∏  

where mppp ,....,, 21  are distinct  prime numbers is equal to :  
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K(Dnh×C2)= 
4

1i =
⊕  K(Cn) 

( ) ( ) ( )1 21 1 ........ 1 2

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕  C4

( ) ( ) ( )1 22 1 1 ........ 1 1

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C2 ⊕ C8 

 = ( )( ) ( )
4

1
1

1

1i

i

mm

p j
i

j ii

j

K C timeα α
= ≠=

=

  
  

⊕ ⊕ ⊕ +  
  

  

∑ ∑ ∏
( ) ( ) ( )1 21 1 ........ 1 2

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕  C4

( ) ( ) ( )1 22 1 1 ........ 1 1

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C2 ⊕ C8             

 

Proof:-  
        By theorem (3.1) and proposition(2.7) we have  

≡
*
(Dnh×C2) = ≡*

(Dnh)⊗ ≡
*(C2) = ≡*

(Dn)⊗ ≡
*(C2) ⊗ ≡

*(C2) 
then 

D(≡*
(Dnh×C2)) = D(≡*

(Dn))⊗D(≡*(C2))⊗D(≡*(C2)) 
From  proposition(2.24) and theorem(2.14) we have  

D(≡* (Dn))=
( )( ) 0

0 2
nD C∗ ≡

 
−  

 

and  D(≡*(C2))= 
2 0
0 1
 
 
 

 then  

D(≡*
(Dnh×C2)) =

( )( ) 0

0 2
nD C∗ ≡

 
−  

⊗
2 0
0 1
 
 
 

⊗
2 0
0 1
 
 
 

 

                         = 

( )( )

( )( )

( )( )

( )( )

4

8

2

4

2

4

2

n

n

n

n

D C

D C

D C

D C

∗

∗

∗

∗

 ≡
 

− 
 

≡ 
 − 
 ≡
 
 −
 

≡ 
 

−  

 

                        = diag {4d1,4d2,…..,4d ( ) ( ) ( )( )111 21 ++⋅+ mααα L ,-8,2d1,2d2,…..,  

                                      2d ( ) ( ) ( )( )111 21 ++⋅+ mααα L ,-4,2d1,2d2,….., 2d ( ) ( ) ( )( )111 21 ++⋅+ mααα L ,-4, 

                                            d1, d2,….., d ( ) ( ) ( )( )111 21 ++⋅+ mααα L ,-2}. 

where di is the invariant factor of  ≡*(Cn) 
Then  by theorem (2.10) we have  

K(Dnh×C2)=
( ) ( ) ( )1 21 1 1

1

m

i

α α α+ ⋅ + +

=
⊕

L

C4d i
⊕ C8

( ) ( ) ( )1 22 1 1 1

1

m

i

α α α+ ⋅ + +

=
⊕

L

C2d i

2

1i =
⊕ C4

( ) ( ) ( )1 21 1 1

1

m

i

α α α+ ⋅ + +

=
⊕

L

 Cd i
⊕ C2 

                 =
( ) ( ) ( )1 24 1 1 1

1

m

i

α α α+ ⋅ + +

=
⊕

L

Cd i

( ) ( ) ( )1 21 1 1 2

1

m

i

α α α+ ⋅ + + +

=
⊕
L

C4

( ) ( ) ( )1 22 1 1 1 1

1

m

i

α α α+ ⋅ + + +

=
⊕

L

C2⊕ C8 

                 = 
4

1i =
⊕  K(Cn) 

( ) ( ) ( )1 21 1 1 2

1

m

i

α α α+ ⋅ + + +

=
⊕
L

 C4

( ) ( ) ( )1 22 1 1 1 1

1

m

i

α α α+ ⋅ + + +

=
⊕

L

C2 ⊕ C8 

From proposition(2.18) we have  
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K(Dnh×C2)= ( )( ) ( )
4

1
1

1

1i

i

mm

p j
i

j ii

j

K C timeα α
= ≠=

=

  
  

⊕ ⊕ ⊕ +  
  

  

∑ ∑ ∏
( ) ( ) ( )1 21 1 ........ 1 2

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C4

( ) ( ) ( )1 22 1 1 ........ 1 1

1

m

i

α α α+ ⋅ + ⋅ ⋅ + +

=
⊕ C2 ⊕ C8■ 

 
Example(3.4):- 

        To find K(D7h×C2) . 

K(D7h×C2) =
4

1i =
⊕ K(C7)

4

1i =
⊕ C4

5

1i =
⊕ C2⊕ C8                      

                =
4

1i =
⊕ C7

4

1i =
⊕ C4

5

1i =
⊕ C2⊕ C8. 

      And  To find K(D63h×C2) . 
K(D63h×C2) = K(D 27 3 h⋅

×C2) 

                   =
4

1i =
⊕ [K(C7)⊕K(C7)⊕K(C7)⊕K(C 23

)⊕K(C 23
)]

8

1i =
⊕ C4

13

1i =
⊕ C2⊕ C8  

                 = 
12

1i =
⊕ C7

8

1i =
⊕ C 23

8

1i =
⊕ C3

8

1i =
⊕ C4

13

1i =
⊕ C2⊕ C8 . 
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