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Abstract 

To determined the safety margin of different Gas-Cooled Reactor Design, linear regression analysis is applied on 
three typical Gas-Cooled Nuclear Reactor design models, viz Gas-Cooled Reactor Design I (GCRD I), Gas-
cooled Reactor Design II (GCRD II) and Gas-cooled Reactor Design III (GCRD III). Empirical expressions are 
obtained for GCRD I model, GCRD II model and GCRD III model. The results of the statistical analyses on 
these three types of nuclear reactor models reveal that the GCRD III promises to be most stable and therefore 
safer. The implication of this research effort to Nigeria’s nuclear power project is discussed. 
Keywords: Linear Regression Analysis, Gas-Cooled Reactor Design Models, Safety Margin, Safety Factor, Ỳ, 
Optimization, Stability Margin in Nuclear Power Reactor Design Models. 
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INTRODUCTION 

Safety margin of operating reactors is defined as the difference or ratio in physical units between the limiting 
value of an assigned parameter the surpassing of which leads to the failure of a system or component, and the 
actual value of that parameter in the plant. The existence of such margins assures that nuclear power plants 
(NPPs) operate safely in all modes of operation and at all, and the unit of measurement is in per unit square (s-1). 
Reactor Stability is ability of a reactor to remain unchanged or to remain in operation over time under stated or 
reasonably expected conditions. Maintaining safety in the design and operation of nuclear power plants (NPPs) 
is a very important task under the conditions of a challenging environment, affected by the deregulated 
electricity market and implementation of risk informed regulations. Typically, safety margins are determined 
with use of computational tools for safety analysis [1]. 
A gas-cooled reactor (GCR) uses graphite as a neutron moderator, nitrogen, carbon dioxide, sodium, lead, 
hydrogen or helium as coolant. Although there are many other types of reactor cooled by gas, the terms GCR are 
particularly used to refer to this type of reactor. The design of a gas–cooled reactor such as Pebble Bed Modular 
Reactor (PBMR) is characterised by inherently safe features, which mean that no human error or equipment 
failure can cause an accident that would harm the public [2]. This type of reactor is claimed to be passively safe; 
that is, it removes the need for redundant, active safety systems [3]. Further literature review reveal that the 
design of PBMR’s uses helium gas as coolant and the design is not as complex as other gas-cooled reactors, it is 
found to be simple, the PBMR’s has lower power density, naturally safe fuel and would have no significant 
radiation release in accident unlike water-cooled reactors. The moderator used in these types of PBMR’s is 
Graphite which offers the advantage of being stable under conditions of high radiation as well as high 
temperature or pressure nor when the velocity of the coolant reduced to zero, these are great advantage over 
water- cooled reactors. The gas- cooled reactors are any more or less economic or reliable than the water-cooled 
reactors. Why because technology is evolving as in the case of PBMR’s. 
In safety studies of High Temperature Gas-Cooled Reactor (HTGR), a failure of a standpipe at the top of the 
reactor vessel or a fuel loading pipe may be one of the most critical design- base accidents. Once the pipe rupture 
accident occurs, helium blows up through the breach immediately [4].  
A loss-of-coolant accident (LOCA) is a mode of failure for a nuclear reactor [5]. LOCAs have occurred in light 
water and heavy water reactors as well as gas cooled and liquid metal cooled ones. Experience have shown that 
while nuclear power plants operate under strict safety codes and emergency procedures, there is no way to fully 
protect them from natural disasters, terrorist attacks or mere human error. Therefore, a study of a loss-of-coolant 
accident (LOCA) is very significant in the design and operation of any nuclear power reactor, since there have 
been several report analysis on the safety of the GCR’s taking into account the specific design features of these 
reactors and loss-of-coolant accident in these reactors, these include ‘Accident analysis for nuclear power plants 
with modular High temperature gas cooled reactors’ [6], ‘Nuclear Plant Risk Studies: Failing the Grade’ and 
Overview Gas-cooled Reactor Problems’ [7], ‘Evaluation of system reliability with common-cause failures, by a 
pseudo-environments model’[8]. ‘Reliability and Safety Analysis Methodology in the Nuclear Programs[9], 
‘nuclear power futures, costs and benefits’[10] and several reports analysis on the cost of failure on these GCR’s, 
this include; ‘A preliminary assessment of major energy accidents’[11].  
Failure may be recognized by measures of risks which include performance, design fault, obsolete components, 
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human errors and accident. These risks can be defined and quantified as the product of the probability of an 
occurrence of failure and a measure of the consequence of that failure.  Since the objective of engineering is to 
design and build things to meet requirements, apart from cost implication, it is important to consider risk along 
with performance, and technology selections made during concept design. Engineering council guidance on risk 
for the engineering profession defined “Engineering Risk” as “the chance of incurring a loss or gain by investing 
in an engineering project” and defined ‘risk’ as the possibility of an adverse outcome [12]. Similar definitions 
are given by Modarres [13], Molak [14] and Blanchard [15], that risk is a measure of the potential loss occurred 
due to natural or human activities. 
In this work, Ordinary Least Square (OLS) methodology, which is largely used in nuclear industry for modeling 
safety, is employed. Some related previous works on the application of regression analysis technique include: 
‘Investigation of Fundamental Thermal- Hydraulic Phenomena in Advanced Gas-Cooled Reactors’ [16], 
‘Quantitative functional failure analysis of a thermal-hydraulic passive system by means of bootstrapped 
Artificial Neural Networks’[17],‘Fuel cycle studies on minor Actinide burning in gas cooled Fast reactors’[18], 
‘Counter-current flow limitations during hot leg injection in Gas-cooled reactors with a multiple linear 

regression model’[19] ‘Experimental study of a trickle-bed reactor operating at high pressure: two-phase 
pressure drop and liquid saturation using regression analyses techniques’[20],‘Posts about Gas-cooled 

reactors’[21],‘Stochastic Modeling of Deterioration in Nuclear Power Plants Components’[22] and 
“Optimization of The Stability Margin for Nuclear Power Reactor Design Models Using Regression Analyses 
Techniques”[23].  
This work provides a mathematical expression for predicting “Safety Factor”, Ỳ, (dependent variable) given the 
values of independent variables(coolant) or input parameters(coolant) for a typical Gas-cooled reactor design 
model. Furthermore, the mathematical expression can be used to determine the contribution of coolant flow rates 
(which is the independent variables) to the nuclear reactor stability, given the value of dependent variable. A 
comparative analysis of three Gas-Cooled Reactor Design Model via the use of RAT was carried out. 
 
THE RESEARCH OBJECTIVES: 

To apply the linear regression technique on Gas-Cooled Reactors for the determination of their Safety Factor in 
terms of their coolant which in turn is a measure of the reactor’s stability and to carry out a comparative analysis 
of three different GCR design models. 
 

RESEARCH DESIGN/APPROACH 

Theory and experience has shown that, for nuclear power plants, coolants (which is gas in this case study) plays 
significant role in the safety of the reactor during operation in preventing reactor damage during accident. Hence, 
in this work, in assessment of some typical gas-cooled reactor designs, the input parameter considered is the 
coolant (which is the gas flow rate in the reactor during operation). 
The typical nuclear reactor designs are coded as GCRD I, GCRD II and GCRD III which stands for Gas-Cooled 
Reactor Design I, Gas-cooled Reactor Design II  and Gas-cooled Reactor Design III.  The data used are those for 
typical Gas-cooled reactor similar to: 
(a) Design Input Parameters Data Sheet of Twin Unit PBMR-Cogeneration of Nuclear Power Plant – 

GCRD I  
(b) Design Input Parameters of the Massachusetts Institutes of Technology (MIT) PBR in USA, Chinese 

PBMRs (HTR-10) and PBMR in South Africa – GCRD II. 
(c) Design Input Parameters of the MIT, Chinese PBMRs (HTR-10) and the PBM in South Africa – GCRD 

III. 
With the input data of each of these different design models, a linear regression analysis technique is applied 
using, Number Cruncher Statistical Software (NCSS). The results give a model equation for each of the different 
design models which can be used to make prediction on the reactor stability. In Tables 1, 2 and 3, the values of 
design input parameters similar to those of the Twin Unit PBMR-Cogeneration plant, PBMR in South Africa, 
Chinese PBMRs (HTR-10) and the MIT PBMR in USA.  
The results obtained in form of model equations for each different design were analysed and used to determine 
the reactor stability.  
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Table 1: Design Input Parameters of A Typical Gas-Cooled Reactor (GCR) Similar to Design Input Parameters 
Data Sheet of Twin Unit PBMR-Cogeneration of Nuclear Power Plant 
Nos. of trial (j) Safety factor Coolant (gas) flow rate in kg/s GCRD I 

1 1.30 100 
2 1.35 105 
3 1.40 110 
4 1.45 115 
5 1.50 120 
6 1.55 125 
7 1.60 130 
8 1.65 135 
9 1.70 140 
10 1.75 145 
11 1.80 150 
12 1.70 155 
13 1.72 160 

Source: [24] 
 

 
Table 2: Design Input Parameters of A Typical Gas-cooled Reactor (GCR) 
Similar to MIT in USA, Chinese PBMRs (HTR-10) and PBR in South Africa 
Nos. of trial (j) Safety factor Coolant (gas) flow rate in kg/s GCRD II 

1 1.30 100 

2 1.35 105 

3 1.40 110 

4 1.45 115 

5 1.50 120 

6 1.55 125 

7 1.60 130 

8 1.65 135 

9 1.71 140 

10 1.73 145 

11 1.75 150 

12 1.77 155 

13 1.79 160 

Source: [25] 
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Table 3: Design Input Parameters of A Typical Gas-cooled Reactor (GCR)   
Similar to the MIT in USA, Chinese PBMRs(HTR-10) and the PBM in South Africa 

Nos. of trial (j) Safety factor Coolant (gas) flow rate in kg/s GCRD III 

1 1.32 100 

2 1.35 105 

3 1.41 110 

4 1.45 115 

5 1.50 120 

6 1.55 125 

7 1.60 130 

8 1.63 135 

9 1.67 140 

10 1.69 145 

11 1.73 150 

12 1.76 155 

13 1.78 160 

14 1.80 165 

Source: [26] 
In order to evaluate the models, the following tests were carried out as applicable to regression analysis 
technique:  
� F-test which is the overall test of the designs 
� t-test which is the test of the individual design  
� Autocorrelation (whether a present error(s) is/are dependent on the last error(s)) 
� Testing the significance of regression coefficients, bi (i.e. the contribution or effect of each design input 

parameter on the reactor stability, assuming all other parameters are held constant). 
� Check for systematic bias in the forecast (where the average error is zero) 
� Normality test. 
 

RESULTS AND ANALYSES  

1.  Gas Cooled Reactor Design I (GCRD - I) 

The results of the application of the linear regression analysis of the data in Table 1,2 and 3 are presented as 
follows: These regression analyses were carried out on three different gas-cooled nuclear reactor designs with 
the use of statistical software known as Number Cruncher Statistics Software (NCSS). 
(i) Empirical Expression for Safety Factor, Ỳ 
The data obtain in Tables 1 which represents typical parameters for Gas-Cooled Reactor Design I (GCRD I) was 
modified in other to obtain the best fit for the model. The new  
conceptual design reactor model optimizes the performance of the similar reactor model of the Twin Unit 
PBMR-Cogeneration Design Input Parameter Nuclear Power Plants. 
The linear regression model equation to be solved is given by:  
         Ỳ   = B0 + B1Xj+ ej    (1) 
where, B0 is an intercept, B1 is the slope and  
Xj  is the rate of flow of coolant and  ej = error or residual.  
The model empirical expression for the Safety Factor Ỳ is obtained, as:     
                                Ỳ = (0.5360) + (0.0080)*(Xj) + ej   (2) 
where, 0.5360 is an intercept, 0.0080 is a slope, X is the rate of flow of gas coolant,   
e = error or residual and j = 1,2,3,…,13.  
Equation (1.2) is the model empirical expression that could be applied to make predictions of the Safety Factor Ỳ 
on this type of (GCRD I).  
 

Note:  

� The linear regression equation is a Mathematical Model describing the relationship between Safety 
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Factor, Ỳ, and the coolant (input parameter, X).  
� That the linear regression equation predicts Safety Factor based on their value. The value of Safety Factor 
depends on the values of design gas coolant flow rate.  
� The influence of all other variables on the value of Safety Factor is lumped into the residual (error - ej). 
 
The Linear Regression Plot Section on GCRD I is shown in Figure 1: 
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Figure 1. Safety Factor (Ỳ) as a function of gas (coolant) flow rate (X) 
 
• The plot Figure 1 shows the relationship between Safety Factor, Ỳ, and the gas (coolant) flow rates, X. The 
straight line implies a linear relationship between Ỳ and X while the closeness of the points to the line indicates 
that the relationship is strong. 
(ii) F -test Result 

 
Table 4 is the summary of the F-test result on GCRD I as shown. 
Table 4:   Summary of F-test Statistical Data on GCRD I 

Parameter Value 

Dependent Variable Ỳ 
Independent Variable X  
Frequency Variable None  
Weight Variable None  
Intercept(B0) 0.5360 
Slope(B1) 0.0080  
R

2
 0.9317  

Correlation 0.9748  

Mean Square Error           2.556593 x 10
-3

  

Coefficient of Variation 0.0321 
Square Root of MSE 5.056277 x 10-2 
                      
�    The value of correlation at 0.9748 (97%) shows that the model is very good and could be of significant 

practical application. 
�    The value 2.556593 x 10-3 for the mean square error (MSE) indicates that the error ej is minimized at 

optimal. 
� The coefficient of determination  (R2) value of 0.9317 indicates that 93.17% of the variation in the Safety 

Factor, Ỳ,  could be accounted for by, X, coolant flow rate for GCRD I. this value further proves that the 
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model is good; 
 

2. Gas-Cooled Reactor Design II (GCRD II) 

We also considered sample from Gas-cooled reactor (GCR) in GCRD II, by performing experiment on GCRD II 
taken input parameters from reactor Similar to the reactor model of the MIT in USA, Chinese PBMRs (HTR-10) 
and PBR in South Africa Design Input Parameter Nuclear Power Plants. The data was modified in other to 
obtain the best fit for the model. 
(i) Empirical Expression for Safety Factor, Ỳ 

The data obtained in Table 2 which represents typical parameter for Gas-Cooled Reactor Design II (GCRD II) 
was modified in order to obtain the best fit for the model. The new conceptual design reactor model optimizes 
the performance of the Design Input Parameters of Typical Pebble Bed Modular Reactor (PBMR) Specifications. 
The model empirical expression for the Safety Factor Ỳ is obtained, as:     
                              Ỳ = (0.5732) + (0.0077)*(Xj) + ej   (3) 
where, 0.5732 is an intercept, 0.0077 is a slope, X  is the rate of flow of gas coolant and, 
e = error or residual and j = 1,2,3,…,13.   
� The equation (1.3) is the model empirical expression that could be applied to make predictions of the 
Safety Factor, Ỳ, on this type of (GCRD II) model.  
The Linear Regression Plot Section on GCRD II is shown in Figure 2.  

      
            Figure 2:   Safety factor (Ỳ) a function of gas (coolant) flow rate (X) 
 
The plot in Figures 2 shows the relationship between Safety Factor, Ỳ and the Gas (coolant) flow rates, X.  The 
straight line shows that there is a linear relationship and the closeness of the points to the line indicates that the 
relationship is strong. 
Next is the summary of the F -test result on GCRD II as shown in Table 5. 
 

(ii) F-test Result 
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The F-test result on GCRD II is shown in Table 5 
Table 5:   Summary of F-test Statistical Data on GCRD II  

Parameter Value 

Dependent Variable Ỳ 
Independent Variable X 
Frequency Variable None 
Weight Variable None 
Intercept (B0) 0.5732 
Slope (B1) 0.0077 
R

2
 0.9571 

Correlation 0.9877 

Mean Square Error 2.525604 x 10
-3

 

Coefficient of Variation 0.2109 
Square Root of MSE 5.025539 x 10-2 

 
� The value of correlation at 0.9877 shows that the model is very good and could be of significant practical 

application. 
�   The value 2.525604 x 10-3 for the mean square error (MSE) indicates that the error ej is minimized at 

optimal. 
� The R2 value of 0.9571 indicates that 95.71% of the variation in Ỳ (Safety Factor)     would be accounted for 

by the gas coolant flow rate, X, for GCRD II 
The value of R2 = 0.9571, therefore, proves that the model is good and valid.  
 

3. Gas-Cooled Reactor Design III (GCRD III) 

We also considered sample from Gas-cooled reactor (GCR) in GCRD III, by performing experiment on GCRD 
III taken input parameters from reactor Similar to the MIT in USA, Chinese PBMRs (HTR-10) and PBR in 
South Africa Design Input Parameter Nuclear Power Plants. The data was modified in other to obtain the best fit 
for the model. 
(i) Empirical Expression for Safety Factor, Ỳ 

The data obtained in Table 3 which represents typical parameter for Gas-Cooled Reactor Design III (GCRD III) 
was modified in order to obtain the best fit for the model. The new conceptual design reactor model optimizes 
the performance of the Design Input Parameters of the similar to the Massachusetts Institutes of Technology 
(MIT) Pebble Bed Reactor and the Pebble Bed Nuclear Power Plant in South Africa. 
The model empirical expression for the Safety Factor Ỳ is obtained, as:     
                              Ỳ = (-139.3887) + (110.9289)*(Xj) + ej   (1.3) 
where, -139.3887 is an intercept, 110.9289 is a slope, X  is the rate of flow of gas coolant, e = error or residual 
and j = 1,2,3,…,13.   
� The equation (1.3) is the model empirical expression that could be applied to make predictions of the 
Safety Factor, Ỳ, on this type of (GCRD III) model. 
  
The Linear Regression Plot Section on GCRD III is shown in Figure 2.  
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Figure 2:   Safety factor (Ỳ) a function of gas (coolant) flow rate (X) 

 
The plot in Figures 2 shows the relationship between Safety Factor, Ỳ and the Gas (coolant) flow rates, X.  The 
straight line shows that there is a linear relationship and the closeness of the points to the line indicates that the 
relationship is strong. 
 
Next is the summary of the F -test result on GCRD III as shown in Table 6. 
(ii) F-test Result 

The F-test result on GCRD III is shown in Table 6 
 

Table 6:   Summary of F-test Statistical Data on GCRD II  

Parameter Value 

Dependent Variable Ỳ 
Independent Variable X 
Frequency Variable None 
Weight Variable None 
Intercept (B0) -139.3887 
Slope (B1) 110.9289 
R

2
 0.9875 

Correlation 0.9938 

Mean Square Error 1.53471 x 10
-3

 

Coefficient of Variation 0.0610 
Square Root of MSE 4.070336 x 10-2 

 
� The value of correlation at 0.9938 shows that the model is very good and could be of significant practical 
application. 
� The value 1.53471 x 10-3 for the mean square error (MSE) indicates that the error ej is minimized at optimal. 
�  The R2 value of 0.9875 indicates that 98.75% of the variation in Ỳ (Safety Factor) would be accounted for by 
the gas coolant flow rate, X, for GCRD II 
The value of R2 = 0.9875, therefore, proves that the model is good and valid.  
 

3. SUMMARY/CONCLUSION 

This work focus on the Gas-cooled reactors design models with the use of linear regression analysis technique. 
Three typical Gas-cooled reactors designs viz GCRD I, GCRD II and GCRD III are considered. A typical 

1.3

 

 

 

 

100 115 130 145 160 

 

 

 

1.4 

1.5 

1.6 

1.7 

(Ỳ) 

X (Gas coolant flow rates in kg/sec.) 
 

S
a

f
e

ty
 F

a
c

to
r

 



Mathematical Theory and Modeling                                                                         

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)

Vol.3, No.8, 2013 

 

example of GCRD I is to the reactor model 
Nuclear Plants secondly, the MIT PBMR in 
typical of GCRD II and thirdly the MIT PB
typical examples of GCRD III.  
The empirical expressions for the optimization of nuclear reactor Safety Factor (
rate for “Gas-Cooled nuclear reactor design models” (GCNRDM) are obtained as
(i)             Ỳ = (0.5360) + (0.0080)*(X
(ii)  Ỳ = (0.5732) + (0.0077)*(X
(iii)  Ỳ = (-139.3887) + (110.9289)*(X
 
These are the model equations that could be applied to make predictions of the safety factor, 
Gas-cooled reactor design models. 
The empirical expressions may also be used for the calculation of the Safety Factor of the reactors
is a measure of the reactor’s stability.
The t-test carried out on these model equations gives a promising level of acceptability or validity. Also, the 
empirical formulae derived can be used to determine the contribution of coolant to the s
The Table 7 highlights the summary results on coolant effects on gas reactors.
Table 7. Summary Results on Coolant Effects on Gas Reactors
Types of Nuclear Power 

Reactor Design Model 

Gas Coolant Reactors 

GCNRD I 
GCNRD II 
GCNRD III 
 
� Figure 4 is a graphical representation comparing the correlation values of GCRD I, GCRD II and GCRD III. 
It is obvious that the Gas-cooled reactor design II (GCRD II), is more stable in terms of Safety Factor. While, it 
is also obvious that the Gas-cooled 
Safety Factor. 
It is also understandable that GCRD II with correlation value of 
correlation value of 0.9748. Finally, GCRD III with correlati
optimized and most stable in terms of Safety Factor than GCRD I and GCRD II.
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reactor model of the Twin Unit PBMR-Cogeneration Design Input Parameter
Nuclear Plants secondly, the MIT PBMR in USA, Chinese PBMRs (HTR-10) and PBR in South Africa are 

MIT PBMR in USA, Chinese PBMRs (HTR-10) and PBR in South Africa are 

The empirical expressions for the optimization of nuclear reactor Safety Factor (Ỳ) as functions of c
Cooled nuclear reactor design models” (GCNRDM) are obtained as: 

= (0.5360) + (0.0080)*(Xj) + ej,     for GCRD I  
= (0.5732) + (0.0077)*(Xj) + ej,    for GCRD II  

139.3887) + (110.9289)*(Xj) + ej,   for GCRD III   

These are the model equations that could be applied to make predictions of the safety factor, 
 

The empirical expressions may also be used for the calculation of the Safety Factor of the reactors
is a measure of the reactor’s stability. 

test carried out on these model equations gives a promising level of acceptability or validity. Also, the 
empirical formulae derived can be used to determine the contribution of coolant to the stability of the reactor. 
The Table 7 highlights the summary results on coolant effects on gas reactors. 
Table 7. Summary Results on Coolant Effects on Gas Reactors 

Correlation  
values between  
Safety factor and  
Coolant 

     R2
  

Indicating 
goodness-  
of -fit 

Mean Square Error

values at which error is 
minimized at optimal

0.9748 0.9317 2.556593 x 10
0.9877 0.9571 2.525604 x 10
0.9938 0.9875 1.53471 x 10

Figure 4 is a graphical representation comparing the correlation values of GCRD I, GCRD II and GCRD III. 
cooled reactor design II (GCRD II), is more stable in terms of Safety Factor. While, it 

cooled reactor design III (GCRD III), is more stable than GCRD II in terms of 

It is also understandable that GCRD II with correlation value of 0.9877 is better optimized than GCRD I with 
. Finally, GCRD III with correlation value of 0.9938 could be said to be the most

optimized and most stable in terms of Safety Factor than GCRD I and GCRD II. 

Figure 4. Gas-Cooled Reactor Design Models 
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as functions of coolant flow 

These are the model equations that could be applied to make predictions of the safety factor, Ỳ, on these types of 

The empirical expressions may also be used for the calculation of the Safety Factor of the reactors which in turn 

test carried out on these model equations gives a promising level of acceptability or validity. Also, the 
tability of the reactor.  

Mean Square Error 

values at which error is 
minimized at optimal 

2.556593 x 10-3 
2.525604 x 10-3 
1.53471 x 10-3 

Figure 4 is a graphical representation comparing the correlation values of GCRD I, GCRD II and GCRD III. 
cooled reactor design II (GCRD II), is more stable in terms of Safety Factor. While, it 

reactor design III (GCRD III), is more stable than GCRD II in terms of 

is better optimized than GCRD I with 
0.9938 could be said to be the most 
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� In Figure 5 the graphical representation shows 
(R2

), values of Gas-Cooled Reactor designs (GCRD I), (GCRD II) and (GCRD II). These bar charts reveal that, 
GCRD I have the lowest value R2, when compared with GCRD I and GCRD II. It is also clea
that the values of GCRD II are better optimized than GCRD I. Further clarification from the figure reveals that 
the values of GCRD III are better optimized than GCRD II.
   
GCRD III promises greatest stability margin with coefficient of d
that it has the best stability margin and possibly the safest when compared with GCRD I and GCRD II with 
coefficient of determination value of 
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Figure 6. Gas-Cooled Reactor Design Models 
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decision-making based on six dissimilar objectives attributes: evolving technology, effectiveness, efficiency, 
cost, safety and failure.  
It is therefore suggested that for countries wishing to include nuclear energy for the generation of electricity, like 
Nigeria, the parameters of the selected nuclear reactor should undergo analysis via RAT for optimization and 
choice. 
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