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Abstract 
 

This paper seeks to develop an algorithm for solving directly an optimal control problem whose solution is close 

to that of analytical solution. An optimal control problem with delay on the state variable was studied with the 

assumption that the control effort is proportional to the state of the dynamical system with a constant feedback 

gain, an estimate of the Riccati for large values of the final time. The performance index and delay constraint 

were discretized to transform the control problem into a large-scale nonlinear programming (NLP) problem 

using the augmented lagrangian method. The delay terms were consistently discretized over the entire delay 

interval to allow for its piecewise continuity at each grid point. The real, symmetric and positive-definite 

properties of the constructed control operator of the formulated unconstrained NLP were analyzed to guarantee 

its invertibility in the Broydon-Fletcher-Goldberg-Shanno (BFGS) based on Quasi-Newton algorithm. Numerical 

example was considered, tested and the results responded much more favourably to the analytical solution with 

linear convergence. 

Keywords: Simpson’s discretization method, proportional control constant, augmented Lagrangian, Quasi –

Newton algorithm, BFGS update formula, delays on state variable, linear convergence. 

 

1.0 Introduction  
 

Differential control systems with delays in state or control variables play important roles in the modelling of 

real-life phenomena in various fields of applications. The introduction of delay in control theory emanated from 

the fact that most real life scenarios involve responses with non-zero delays such as models of conveyor belts, 

urban traffics, transportation, signal transmission, nuclear reactors, heat exchangers and robotics that are 

synonymous with optimal control models. Falbo [4 &5] worked on the complete solutions to certain Functional 

Differential Equations which seek to address salient approach in developing analytical solutions to delay 

Differential Equation using either methods of characteristics or Myshkis method of steps [12] which were 

discovered to be very tedious for large space problems. However, many papers have been devoted to delayed 

(other terminology: time lag, retarded, hereditary) optimal control problems for the derivation of necessary 

optimality conditions after it was first introduced by Oguztoreli [13] in 1966. Most of the adopted methods were 

for the provision of the analytical maximum principle for the optimal control problems with a constant state 

delay firstly by Kharatishvili [10]. Though he later gave similar results for control problems with pure control 

delays [11] while multiple constant delays in state and control variables was by Halanay [9] in which the delays 

are chosen to be equal for both state and control. Banks [1] later derived a maximum principle for control 

systems with a time-dependent delay in the state variable while Guinn [8] sketches a simple method for 

obtaining necessary conditions for control problems with a constant delay in the state variable. The recent work 

by Gollman et al [7] was in the development of the Pontryagin-type minimum (maximum) principle for the 

optimal control problems with constant delays in state and control variables and mixed control–state inequality 

constraints with the aim of presenting a discretized nonlinear programming methods that provide the optimal 

state, control and adjoint functions that allows for an accurate check of the necessary conditions. Colonius and 
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Hinrichsen [3] and Soliman et al [18] also provide a unified approach to control problems with delays in the state 

variable by applying the theory of necessary conditions for optimization problems in function spaces. 

  However, all these reviewed literature were mainly analytical approach and did not consider any direct 

method amenable to direct numerical algorithms except for the recent publication by Olotu and Adekunle [14] 

on the algorithm for numerical solution to optimal control problem governed by delay differential equation 

purely on the state variable with emphasis on vector-matrix coefficients. This research then seeks to address the 

direct numerical approach to solving this optimal control problem with a pre-shaped function within the delay 

interval such that the optimal control law has a constant feedback gain as a relationship between its control and 

state variables. For technical reasons, we used the assumption that the ratio of the time delays in state and control 

is a rational number based on the analysis of Gollman et al [7]. 

 

2.0  General formulation of the problem 
 

The optimal control problem is modeled to find the state and control trajectories that optimize minimize the 

objective function of the statement of problem below. 
 

0

1Min J(x, w) = F(t, x(t), w(t))dt (1)
2

T

∫                         

( ) ( ) ( )
subject to ;

x t = g[t, x t , x(t - r) , w t ] t [0 , T]

x(t) = h(t) t [-r , 0]

x(0) = x , w(t) = m x(t), for p, q, a , b , r, m (real) and p , q , r > 0
0

∈

∈

∈







&



             (2)       

 

where x and u are the state and control trajectories respectively, describing the system. The numerical solution to 

the optimal control problem is a direct approximate method requiring the parameterizing of each control history 

using a set of nodal points which then become the variables in the resulting parameter optimization problem. In 

the discretization of the continuous-time optimal control problem into a Non-Linear Programming (NLP) 

problem, we assume the values of the pre-shaped (known historical) function h(t)  at each nodal (grid mesh) 

point within the delay interval[-r ,0]  to be a constant for each rational value r such that  r = h.s  where s +∈
and h kt= ∆ usually expressed in the form h = u 10 v−×  for u, v +∈ . 

 

3.0    Materials and Method of solution 

Consider optimal control problem with time delay of the form 

              0

2 2
Min J(x, w) = (px (t) + qw (t))dt

T
∫  

  
( ) ( ) ( )

subject to:

x t = ax t + bw t + cx(t - r) , t [0 , T]

x(t) = h(t) , t [-r , 0]

x(0) = x where p, q, a , b , c, r (real) and p , q , r > 0
0

∈

∈

∈







&



 

 

We then discretize the performance index of the continuous-time model to generate large sparse discretized 

matrices using the composite Simpson’s rule [2] of the form 

   

( )n

n n
-1

2 2t
4 4

0 n 2k 2k -1
0

k =1 k =1

h n
f[x(t)]dt = f[x(t )] + f[x(t )] + 2 f[x(t )] + 4 f[x(t )] - h f ξ

3 180

 
  
    

  

∑ ∑∫ ,                

Where x(t ) = x
j j

, f C' t , tn0
 ∈   , n is an even positive integer, 

n 0t - t
h =

n
 and j 0x = x + jh  for each

j = 0,1, 2,..., n .     

(5)

(3)

(4 )a

(4 )b
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For

2
(p + qm ) T 2hE = , w(t) = m x(t) , h = and p = ,

33 n
the discretised performance index becomes;

 

0 0

n-12 2x 2 xEp2 2 2 2 201 nJ(x.w) = (px (t) + qw (t))dt = x (t)dt + (2x + x ) +
2k-1 2k2 2 2 2k=1

T T

≈ ∑
 
 
 
 

∫ ∫     

 

  

  

( )

Ep 0 0 . . 0 0 x
1

Ep
x0 0 . . . . 2

2
x0 0 Ep . . . . 23

Epx
01 1= x , x ,..., x . + = Z VZ + C (7). . . . . . .n1 22 24

. . . . . . 0 .

. . . . . . 0 .

Ep xn0 0 0 . . 0
4

T

  
  
  
  
  
  
  
  
  
  
     

 

where 1 2 nZ = (x , x ,..............x ) is a   -dimensional vector and
ij

V = v    is a n譶  dimensional coefficient 

matrix defined below as  

ij

Ep i = j( odd )

Ep
i = j( even )

2
V = [v ]=

Ep
i = j = n

4

0 elsewhere











             

   (8)  

 
2

oEpx
and C =

4
                            

  (9)  

The discretization of the constraint of the delayed optimal proportional control problem using the 2-step third 

order Simpson’s rule gives a discrete constraint equation and initial value profiles from the pre-shaped function 

over the delay intervals [-r ,0]  defined by the following equations;  
  

4
f(x ) + 4(x ) +(x ) + O(h )

k+2 k+1 k

x = h(- kh), k =1,2,..........,s (where x are known constants)
-k -k

(10a)

(10b)

  

By further expansion gives,  
 

(6)

n
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Tx + Ux + x = S(x + 4x + x )
k k+1 k+2 k-s k+1-s k+2-s

≈  

Given 0 < m < n -1 and A = a + bm < 0, therefore 
 

(Ah + 3) 4Ah
K = ,L =

(Ah -3) (Ah -3)
 and ( ) ( )x t - r = x t - sh = x .

k k k-s           (12)  

���	� = �,	     1 2 0 -s 1-s 2-sUx + x = -Tx + S(x + 4x + x )
 

���	� = 	       1 2 3 1-s 2-s 3-sTx + Ux + x = S(x + 4x + x )
 

���	� = 
        2 3 4 2-s 3-s 4-sTx + Ux + x = S(x + 4x + x )
 

. 

. 

���	� = 
        s-2 s-1 s -2 -1 0Tx + Ux + x = S(x + 4x + x )
 

set k = s -1     1 s-1 s s+1 -1 0-Sx + Tx + Ux + x = S(x + 4x )
 

set k = s      1 2 s s+1 s+2 0-4Sx -Sx + Tx + Ux + x = Sx
 

 

set k = s +q for q = 1,2,3........(n -3- s)   

    s s+1 s+2 s+q s+q+1 s+q+2-Sx - 4Sx - Sx + Tx + Ux + x = 0  

���	� = � − 
           -SX - 4SX - SX + TX + UX + X = 0n-s nn-2-s n-1-s n-2 n-1
 

 

The above system becomes  
 

x
1

U 1 0 . . . . . 0
x

2T U 1 0 . . . . .
.

0 T U 1 0 . . . . .

. . . .
x

s-20 .

x-S 0 . 0 T U 1 0 . . 0 s-1
-4S -S 0 . 0 T U 1 0 . . . . xs
-S -4S -S 0 . 0 T U 1 . 0 . . x

s+1
0 -S -4S -S 0 . 0 T U 1 0 .

.
. . . . . . 0

.
. . . . . . . 0

x
n-10 . . 0 -S -4S -S 0 . 0 T U 1

xn


 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



-Tx + S(x + 4x + x )-s0 1-s 2-s

S(x + 4x + x )
1-s 2-s 3-s

.

.

.

S(x + 4x + x )
-2 -1 0

=
S(x + 4x )

-1 0

Sx
0

0

0

.

0

  
  
  
  
  
  
  
  
  
  
  

   
   
   
   
   
   
    

 

 

Therefore, 
 

JZ = H                                  
(14)  

Where J  is a  (n -1)譶   sparse coefficient matrix defined by 

(11)

(13)
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U 1 i n -1 j = i

T 2 i n -1 j = i -1

1 1 i n -1 j = i +1

J = [j ] = s -1 i n -1 j = i + 2 - s
ij -S

s +1 i n -1 j = i - s

-4S s i n -1 j = i - s +1

0 elsewhere

≤ ≤

≤ ≤
≤ ≤

≤ ≤
≤ ≤

≤ ≤







 




                                                         (15)

 

 

H  is a (n -1)? column vector defined by  

-TX + S(X + 4X + X ) i = 1-s0 1-s 2-s

S(X + 4X + X ) 2 i s -1
i-1-s i-s i+1-s

H = [h ] = S(X + 4X ) i = s
-1 0i1

SX i = s +1
0

0 elsewhere [i.e i = s + 2, s + 3,.........n -1]

≤ ≤










     

 

and 
T

1 2 nZ = (x ,x .............x )
  

is a n-dimensional column vector.  

The combination of equations (7 &14) by the parameter optimization gives the constrained discretized non-linear 

programming (quadratic) problem stated below: 

   

1Min F(Z) = Z VZ + C
2

Subject JZ = H

T

 

Where Z  is a column vector of dimension n?  for 
T

1 2 nZ = ( x , x ,..............., x ) , V a sparse tri-diagonal 

matrix of dimension n譶 , J a sparse coefficient matrix of dimension (n -1)譶   and H  a row vector of 

dimension (n -1)? . 

Applying the Augmented Lagrangian Method reviewed by Fiacco et al [6] as earlier proposed by Powell [17] 

where the penalty term is added not only to the objective function but also to the lagrangian function to give 

( ) µ 2T T1L Z, λ, µ = Z VZ + C + λ JZ - H + JZ - Hρ 2 2  
 

On expanding equation (18) gives the following quadratic programming problem below to be solved by the 

Quasi-Newton Method (QNM). 

( ) ( ) ( ) µT T T T T T1L Z, λ,µ = Z V + µJ J Z + λ J - µH J Z + H H - λ H + Cρ 2 2

       
 

( ) T T

ρ ρ ρ ρ
1L Z, λ,µ = Z V Z + J Z + C

2  
where ρDim (V ) = n譶 , T

ρDim (J ) =1譶 , and ρDim (C ) =1? represent the dimensions of the various 

coefficients (discretized matrices stated below) of the lagrangian function. 

( ) ( ) µT T T T T T
V = V + µJ J ,J = λ J - µH J and C = H H - λ H + Cρ ρ ρ

2

       
           

(21)  

Lemma 1: The constructed quadratic operator ( )T

ρV = V + µJ J 
  of the formulated lagrangian function is 

real, symmetric and positive definite.  See proof in [15]. 

The symmetric and positive definite properties of the quadratic operator are to ensure the invertibility of the 

BFGS in the Quasi-Newton Algorithm (inner loop) and as well enforce the feasibility condition of the 

augmented Lagrangian Method (outer loop) used in the formulation of the  unconstrained NLP problem as 

expressed by Olotu and Dawodu[16]. 

(19)

(17)

(18)

(20)

(16)
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4.0       The numerical Algorithm for the developed scheme 

 

(1) var , , ,
( 1) *

(2) , , T ( ) 0, 0 0
0,0 0

Compute given iables V M N m
n n

Choose Z B I tolerance and initialize by setting jj jµ λ− ×∈ = > > =
 

( )
0 0,0 0

(3a) set i = 0 and g L Z Lz

µ jT T T T
(3b) compute V = [V + (µ J J)] ,M = [λ J - (µ H J)] , N = H H - λ H + Ci j i j j i j2

(3c) set S = -[B ]g (search direction) andi i i

= ∇ = ∇

 
  
 

        

              

T
-(M S + Z V S )* i i i i i(3d) compute α = (steplength)i T

S V Si i i
*

(3e) set Z = Z +α S andj,i i ij,i+1
(3f) compute g =袻 (Z ,λ ,µ )z j jj,i+1k+1

*
(3g) if 袻 (Z ,λ , µ £T go to step 4 else go to (3h)z j jj,i+1

(inner convergence from Quasi - Newton)

 

(3 )
1 1

( ) ( )
(3 ) [1 ][ ] [ ] ( )

(3 ) 3( ) 1
1

h set q g g and p z zi i i ii i
T T T T

q B q p p p q B B q pu i i i i i i i i i i ii compute B BFGSi T T T
p q p q p qi i i i i i

u
j set B B B and repeat steps a f for next i ii ii

= − = −+ +
+

= + −

= + − = ++

 

( )

* * *
(4) ! Choose? 5)

, 1 , 1, 1

( )

1
(5) 2 ( ) ( )

1 0 1

(6) (3) 1

If JZ H T stop Z and compute W else go to step
j i j ij i

outer convergence from lagrangian

j
Update penalty and JZ H multiplierj j jj j

Go to step for next j j

µ µ λ λ µ

− ≤+ ++

+= × = + −+ +
= +

 

 

 

5.0   The analytical optimal proportional control formulation 
 

Consider the re-formulated delay optimal proportional control problem with delay 0r ≥ only on the state 

expressed below as 

0

2 2
( ) 20( , ) ( ) (22)

2

( ) ( ) ( ) ( - ) ( ) ( - ) [0 , ] (23)

( ) ( ) [- ,0] 0

( ) ( ) , , , , , , , , , 0 0 (24)

Tx p qm
Minimize J x m x t dt

x t a bm x t cx t r Ax t cx t r t T

x t h t t r r

w t mx t a b c p q r m p q r and c

+
=

= + + = + ∈
= ∈ ≥
= ∈ > <





∫
&



 

 

Theorem 5.1(Myshkis method of steps for first order homogenous linear ordinary delay differential equation) 
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( )23 . , (23)
0

( 1)
( ) [ ( )] (( 1) ) [( 1) , ]

1 1
( 1)

( ) ( ) (0
1

Given the delay differential equation let h then has a unique solution

t n rAAt As
x t e ce h s ds x n r e given on n r nr and satisfies the conditionn n n

n r
x t r h t r and xn n

∈

− −−= + − −∫ − −−
− = −−

 
 
 



) [ , 0] , , .
0 0

h on r for n and A c h= − ∈ ∈ 

 

Proof: see [14] 

To further illustrate the analytical solution to the Delay Differential Equation (DDE) with the relevant theorem 

stated in theorem 5.1 for easy applications, the Method of Steps, though tedious, which is the simplest analytical 

approach to the DDE compared to methods of Characteristics; least Square or Laplace transforms, can be 

applied. In the general (linear or nonlinear) first order DDE expressed below, the steps will be illustrated. 
 

y(t) = f(t, y(t), y(t - r))& for t [0, r] , r > 0∈  
 

y(t) = p(t) for t [-r,0]∈  
 

Step 1: On the delay interval[-r,0] , function y(t) is the given function p(t) ; which gives 0y (t) . 

Step 2: In the interval [0, r]  the system in equation (25) above becomes 0y(t) = f(t, y(t), y (t - r))&  on [0 , r]  

subject  

            to 0y(0) = p(0) for y (t - r) = p(t - r) defined on [0, r]  with the solution 1y (t) obtained  by “Method 

of  

            Integration by parts”. 

Step 3: On the next interval [r , 2r] , the system is defined on [0 , r] where 1y (t - r) is reading its values from 

another  

            domain [-r ,0] known for all t [-r,0]∈ such that 1y (t) = p(t) . 

Step 4: This process continues until subsequent solutions of each step of the system on the interval 

[(n -1)r , nr] for 

         T = nr  is evaluated such that the known function n-1y (t - r) is replaced with ny (t - r) on the next 

interval. 

     

    Theorem 5.2 (pontryagin’s minimum principle for delay optimal control problem)      

    

0

*
( ) (23) ( ) ,

TGiven the delay proportional optimal control problem witth delay r such that r and
n

x t is the optimal solution of the state system that minimizes the performance index J x

then there exists a costate(adjoint) function λ

+> = ∈ 

1
([0 , ] ) ( ) int

( ) [0 , ].

n
W T such that the i adjo differential

equation and ii transversality condition below are satisfied for t T

∞∈

∈



 

      

2 *
( ) 2( ) ( ) ( ) ( ) ( ) 0 ]

( )
2 *

( ) 2( ) ( ) ( ) ( ) ]

t p qm x t a bm t c t r t T r
i

t p qm x t a bm t T r t T

λ λ λ

λ λ

= − + − + − + ≤ ≤ −

= − + − + − ≤ ≤





&

&

      

       

     ( ) ( ) 0ii Tλ =                  

(27)  
 

Proof: see [14] 
 

 

 

 

(25)

(26)
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Theorem 5.3 

( )23 0 0

1 1 1
[1 ( )] 0 , 0.

Given the delay differential equation DDE above with the delay r and A a bm then there

exists a unique real solution of the DDE such that for m = +log -rc - a then ce
b r re

> = + <

< − < <
 
 
 

 

Proof: 

By the method of characteristics, the solution to the state of equation can be represented with   
θt

x(t) = ke   and 

when put into (23) will give a nonlinear characteristic stated in equation (28) below with fixed values of the 

coefficients a,b,c and r . 

θr
V(θ) = (θ - A)e - c = 0 (28)

 
 

To ascertain the feedback gain at which the control is at optimum, the gradient of the equation (28) gives  

 
θr θr θr

V(θ) = (θ - A)re +e =[(θ - A)r +1]e = 0&         
(29)  

1
A

r
θ = −   to give 

1 Ar-1
V(θ) = (- ) e - c = 0

r
 

1
A = 1 + log (-rc) = a + bm < 0 to givee

r
    

1 1
m = [1+ log (-rc)] - a < 0 (30)e

b r

 
 
 

 
 

For log (-rc) to exist given that r >0, it then implies that c<0 and also given that a + bm<0,e   
 

To therefore guarantee convergence and uniqueness of real solution, the interval below must be satisfied 

         

1
- < c < 0 (31)

re
  

 

6.0         Numerical examples and presentation of results 

 

Example (6.1): consider a one-dimensional optimal control problem 

    
5

0

2 21Min J(x, w) = (x + w (32)
2

(t) (t))dt∫        

    

( ) ( ) ( )
subject to;

x t = 2x t + w t - 0.3x(t - 0.5) , 0 t 7 (33)

x(t) = h(t) = t and x(0) =1, t [-0.5,0]

≤ ≤

∈





&  

 

Using the method of steps in theorem (5.1) to solve the DOCP analytical with the parameters    

  a = 2,  b = 1, c = -0.3, x = 1, r = 0.5, h = 1, T = 7 and A = a + bm = -1.7942 < 0 with
0 0    

 e

1 -1
m = [1+ log (-rc)] - a = -3.7942

b r

 
 
 

and the constraint of equation (31) becomes  

( ) ( ) ( )x t = Ax t - 0.3x(t - 0.5) = -1.7942 x t - 0.3x(t - 0.5) on [0 ,7]

x(t) = h(t) = t with x(0) = h(0) = 1 on [-0.5, 0]

&
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The solution ( )0 0
( )x t h t t= =  exist on the interval 0.5 0t− ≤ ≤  such that for

7
14

0.5

T
n

r
= = =  steps 

( ) ( )
( )

x t - Ax t = -0.3x (t- 0.5) = -0.3h (t) on [0.5(k-1) , 0.5k], 1, 2,.....,14 (34)
k k k k-1

and x t- 0.5 = h (t- 0.5)
k k-1

k =&

 

 
( ) ( )+1.7942 0.3 ( 0.5) 0.3 0.3 on [0 0.5]

1 1 1 0

(0) (0) 1 on [ 0,5 0]
1 0

x t x t x t h

for x h

= − − = − = −

= = −

&

  

( )1.7942 1.7942 1.7942integrating factor (IF) = then 0.3 (0) on [0,0.5]
1 1

0

ttdt t se x t e e ds x
 −∫ = − +∫ 
 

 

1.7942( 1)1.7942 1.79420.3 ( (0) (0.1672 1.1672 )
11.7942

tet te x e
  − − −= − + = +  

    

 

Therefore, 

( ) -1.7942t
x t = 0.1672 +1.1672e on [0 ,0.5] (35)
1

 

Similarly, for next step, the solution exist on the interval  0.5 1t≤ ≤  such that 

( ) -1.7942(t-0.5)
( - 0.5) ( - 0.5) 0.5 0.1672 +1.1672e

2 1 1
x t h t x t= = − = and 

2 1(0.5) (0.5) 0.3087x h= =    

( ) { }1.7942( 0.5)1.7942
0.3 [1.1672 0.1672] (0.5) on [0.5,1]

0.52 1
st

x t e e ds h
−−= − + +∫ 

  
 

( ) -1.7942t -1.7942t
x t = -0.0796 + 0.9774e - 0.0502te t [0.5,1] (36)

2
∈ 

 
. 

. ( )
k-1 j -1.7942t

x t = σ + β t e on [0.5(k -1) , 0.5k]
k k kjj=0

∑
 
 
 

 

for x (t - 0.5) = h (t - 0.5), k = 3, 4,5...........14; j = 1, 2........14
k k-1

 

Where the coefficients ( )k kjandσ β  of the rest of the solution for other sub-intervals can be solved with the 

MATLAB package because of the tedious nature of the analytical computations for various steps to obtain the 

results in table 3 below as well as the analytical objective value from the proportional DOCP result with the 

given parameters 0 0p = 1, q = 1, a = 2, b =1, c = -0.3, x = 1, r = 0.5, h =1 and T = 7
 
to give 

.AJ  = 1.92882143 The numerical objective value from the Quasi-Newton based augmented lagrangian 

method using MATLAB subroutine is
NJ =1.9296402 . Here we take 

-5µ = 1000, ε = 10 , h = 0.1 for
large 7T =  as shown in the selected values of the parameters (XN ,WN  ,XA ,WA ,EX  and EW ) representing the 

state , control and  errors for the numerical and analytical results respectively as outlined in the table 3 below: 
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Table 1: Comparison of analytical and numerical results (DOCP for newly developed scheme) 
 

t XN WN XA WA EX EW 

0.0000 1.0000 -3.7942 1.0000 -3.7942 0.0000 0.0000 

0.1000 0.8259 -3.1336 0.8031 -3.0471 0.0228 -0.0865 

0.2000 0.6441 -2.4438 0.6481 -2.4590 -0.0040 0.0152 

0.3000 0.5873 -2.2283 0.5142 -1.9510 0.0731 -0.2773 

0.4000 0.4388 -1.6649 0.4023 -1.5264 0.0365 -0.1385 

0.5000 0.3653 -1.3860 0.3087 -1.1713 0.0566 -0.2147 

0.6000 0.2974 -1.1284 0.2432 -0.9228 0.0542 -0.2056 

0.7000 0.2570 -0.9751 0.1888 -0.7163 0.0682 -0.2588 

0.8000 0.1980 -0.7513 0.1435 -0.5445 0.0545 -0.2068 

0.9000 0.1460 -0.5540 0.1059 -0.4018 0.0401 -0.1521 

1.0000 0.1051 -0.3988 0.0746 -0.2830 0.0305 -0.1157 

2.0000 -0.0033 0.0125 0.0093 -0.0353 -0.0126 0.0478 

3.0000 0.0008 -0.0030 0.0027 -0.0102 -0.0019 0.0072 

4.0000 0.0024 -0.0091 0.0012 -0.0046 0.0012 -0.0046 

5.0000 0.0040 -0.0152 0.0037 -0.0140 0.0003 -0.0011 

6.0000 0.0067 -0.0254 0.0064 -0.0243 0.0003 -0.0011 

7.0000 0.0114 -0.0433 0.0112 -0.0425 0.0002 -0.0008 
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Graphical Representation of numerical result of developed scheme  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

6.1   Analysis of the numerical results  
 

 

 

 

 

 

 

 

 

Numerically, the stability of the system considering the behaviour of the state (delay differential equation) with 

respect to the variation of all its relevant parameters was analyzed. It was observed that small values of the 

coefficient c < 0  of the delay term r > 0  move the delay differential equation (constraint) towards stable 

region for increasing values of the final time T with other parameters fixed as presented in figures 1-4. It was 

also observed that since the nonhomogeneous delay differential equation (DDE) exhibits exponential growth or 

decay, then the nature of the pre-shaped function ( )h t  within the delay interval[-r ,0] determines to a large 

extent the convergence of the solution of the DDE within the bounded interval[0 ,T] . Therefore the solution of 

the state of the DOCP depends heavily on the relationship between the values of
0A, c, r and h (t) . 

 

6.2          Convergence Analysis 

 

Suppose { } n

kz ⊂  represents the sequence of solution kz  that approaches a limit 
*z (say

*

kz z→ ), then the 

error ( )k ke z e= is such that   
*( ) 0k k ke z e z z= = − ≥  for

n

kz∀ ⊂   and
*( ) 0e z ≠ . 

   For purpose of convenience, assuming the convergence ratio is represented with β , then  

    

*

11

*
lim lim 0

kk
k

k k
k k

z ze
for e k

e z z
β ++

→∞ →∞

−
= = ≠ ∀

−
 where                                  

(37)    

0 1, 0 1 ,sup .and Quadratic er linear and sub linear convergence respectivelyβ β β< < = = ⇒ − −  
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However, the convergence ratio ( )β  of the earlier example (6.1) expressed in terms of the penalty parameter (

µ ) used in the newly developed algorithm is shown in table 2 below. 

 

    Table 2: Convergence ratio profile 

 

penalty parameter ( µ ) Objective value ( r ) convergence ratio (β
) 

21.0 10×  1.9321041 - 

31.0 10×  1.9296402 0.1335 

41.0 10×  1.9288349 0.1237 

51.0 10×  1.9288228 0.1044 

 

The result on the table shows that the convergence ratio ( )β  hovers round the average figure of β =0.120543
for increasing values of the penalty parameter with longer processing time which makes the convergence linear 

though close to being super-linear because of its proximity to zero. This convergence is satisfactory for 

optimization algorithms since the convergence is not close to one. 

 

7.0  Conclusion 
  

This research has enabled us to develop an efficient numerical method for computing the optimal state and 

control variables of an optimal proportional control problem with high level of accuracy. We present a 

discretization method using the Simpson’s rule whereby the control problem is transcribed into a high-

dimensional nonlinear programming problem using the augmented Lagrangian function. Excellent result was 

being obtained using the MATLAB subroutines when result is compared with the analytical result from the 

method of steps. All the excellent computational results obtained were from the computations performed on a 

DELL processor of 1.67 GHz Intel® Atom (TM) CPU under Window 7 operating system. 
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