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Abstract 
 In this paper, we propose a test statistic for testing equality of two independent sample means for unequal 

variances. When group variances differ, the pooled sample variance (
2
PS  ) is inadequate as a single value for the 

variances. This problem is commonly known as the Behrens – Fisher problem. Instead, the sample harmonic 

mean of variances (
2
HS  ) is proposed, examined and found to better represent the unequal variances. The 

distribution of 
2
HS  which is known to be generalized Beta is further approximated by the chi – square 

distribution with the degrees of freedom related to that of degrees of freedom of the chi – square distribution of  
2
PS  . Consequently, it is used to replace the pooled sample variance in the resulting proposed t – test. An 

example of application is provided. 
Keywords: Harmonic mean of variances, chi- square distribution, modified t – test statistic  
 
1.   INTRODUCTION 
Many authors such as Jonckheere (1954), Dunnett (1964), Montgomery (1981), Dunnet and Tamhane (1997), 
Yahya and Jolayemi (2003), Gupta  et. al (2006),  worked on the conventional test statistic on equality of two 

population means, 210 : µµ =H  against non-directional alternative, H1: 21 µµ ≠ . When the variances are 

unequal, the pooled sample variance overestimates the appropriate variance and the test statistic becomes 
conservative. This is the well known Behrens – Fisher problem. There is therefore the need to seek for an 
alternative to the pooled variance. The interest of this work is to develop a suitable test procedure to address 
heterogeneity of variances, see Abidoye et. al (2013) 
 
2.    METHODOLOGY 

We are interested in developing a suitable test procedure to test the hypothesis: 

210 : µµ =H against 211 : µµ ≠H 0:0: 211210 ≠−=− µµµµ HvsHor  
   

……(2.1) 
when the error term ),0(~ 2

iij Ne σ   .2,1=i  and inj ,...,2,1=  at is, under heterogeneity of variances. 

Consequently ),(~ 2
iiij NX σµ  where ijX  are the observed value.  

 The unbiased estimate of  YXX =−=− )()( 2121 µµ                 …………………………………….(2.2) 

where  21, XX  are the sample means for groups 1 and 2 respectively.
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2.1    DISTRIBUTION OF HARMONIC VARIANCE 

Abidoye et al (2007) showed that 
2
Hσ  harmonic mean of group variances better represents series of unequal 

group variances and is estimated by .2
HS  It was also shown that the sample distribution of 

2
HS  is approximated 

by the chi – square distribution.  

)5.2...(......................................................................))........(,(~)(
21

212
2121 nn

nn
NXXY H

+−−= σµµ

Consequently, the test statistic for the hypotheses set in equation (2.1) is  
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Now p- value =  )( ttP r >
…       ……...…………………….…………….……………….(2.9) 

where  tr is regular t – distribution and r is the appropriate degrees of freedom for the t – test , which is obtained 
as shown in the next section. 
 

3.    DETERMINATION OF DEGREES OF FREEDOM FOR THE DISTRIBUTION OF SAMPLE 
HARMONIC MEAN OF VARIANCES 

3.1   SIMULATION 

Let  ),(~ 2
iiij NX σµ     , i = 1, 2  ;  j = 1,2, …, ni   ∑= inn and  set  .2

2
2
1 σσ ≠  For various values of n ,  

generate  Xij and compute 
2
HS  having estimated degree of freedom as   ;  and α is obtained from 

the generalised beta with parameters λ, α, and β all of which are estimated by method of moment . The degrees 

of freedom (r ) for the proposed test statistic in equation (2.6) was related to ∑ − 2in  = n- 2 degrees of 

freedom for the pooled variance (
2
PS ), where 

2
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nn

SnSn
S p .  The value of degree of 

freedom of  r was obtained through the ).(ˆ 2
)( Hn sY=α

 from equation (2.5), where Y(n) is maximum value of Y.  

Table 1 gives the values of n-2 the degrees of freedom for the pooled sample variance  
2
pS

 against the estimated 

degrees of freedom   
r̂

for the chi – square distribution of  
2
HS . 
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Table 1: Simulated values of degrees of freedom for the proposed t - test statistic 
  
 n-2 

     
n -2 

       
n -2 
 

     

8 
 

4.8  318 189.9  618 364.4 
 

18 8.6  328 199.8  628 369.1 
28 13.4  338 207.9  638 374.3 
38 19.2  348 215.6  648 379.4 
48 23.2  358 226.4  658 384.7 
58 25.6  368 232.3  668 389.6 
68 26.8  378 238.9  678 394.9 
78 36.3  388 253.2  688 399.8 
88 39.6  398 264.4  698 404.2 
98 41.8  408 265.2  708 409.8 
108 51.3  418 267.5  718 414.2 
118 58.9  428 269.3  728 419.4 
128 62.1   438 274.3  738 424.7 
138 67.7  448 279.4  748 429.2 
148 71.5  458 284.4  758 434.4 
158 74.6  468 289.8  768 439.7 
168 85.2  478 294.3  778 444.5 
178 95.9  488 299.1  788 449.2 
198 98.6  498 304.4  798 454.6 
208 113.8  508 309.4  808 459.8 
218 118.4  518 314.1  818 464.2 
228 124.9  528 319.2  828 469.5 
238 133.2  538 324.4  838 474.2 
248 138.8  548 329.9  848 479.3 
258 142.4  558 334.3  858 484.7 
268 148.3  568 339.4  868 489.8 
 278 152.7  578 344.4  878 494.4 
288 163.2  588 349.2  888 499.2 
298 175.4  598 354.2  898 504.8 
308 182.8  608 359.5    
 
3.2    RELATIONSHIP BETWEEN EMPIRICAL DEGREE OF FREEDOM ( r ) AND n-2  
The values of empirical degree of freedom (r ) for chi-square  from above simulated data in Tables 1 were 

plotted against ,22 −=−∑ nni  where n  is the  total number of all the observations in the groups. 

Clearly the contending models were, simple linear, quadratic and cubic models, see Figure 1. Table 2 shows 
coefficient of determination R2 and adjusted R2   

α̂2ˆ =r α̂2ˆ=rα̂2ˆ=r
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degree of freedom for pooled variances
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Figure 1: Plot of simulated degrees of freedom against the chi – square degrees of freedom  

 
Table 2: Showing R2 and Adjusted R2 under Linear, Quadratic and Cubic   

Model R2 Adjusted R2 Coefficients 
Linear 0.99337 0.99329 a0 = 0.607389 

a1 = 0.581022 
Quadratic 0.99731 0.99724 a0 = 20.966752 

a1 = 0.722882 
a2 = -0.000157 

Cubic 0.99760 0.99752 a0 = 13.856149 
a1 = 0.629294 
a2 = 0.000101 

           a3 = -0.0000001897 
From the results, the quadratic equation  ( polynomial of order two ) was seen to perform best in term of  R2 , 
adjusted R2 or the associated complexity so that the degree of freedom for the approximated chi –square is given 

by r = 20.966752 + 0.722882(n –2) – 0.000157(n-2)2 , where ∑
=

=
g

i
inn

1

 is as defined earlier. 

3.3    CONCLUSION 
In this work we have established the degrees of freedom of the chi- square distribution proposed of the 
distribution of the sample harmonic mean of variances. Because the sample harmonic mean of variances has the 
chi – square distribution, the modified t – statistic is appropriate and eliminates the Beheren- Fisher’s problem. 
4.    APPLICATION  
In this study, the data used were secondary data, collected primarily by Kwara Agriculture Development Project 
(KWADP), Ilorin, Kwara State, Nigeria.  They were extracts from her Agronomic survey report for ten 
consecutive cropping seasons, covering the period 1998 – 2007, see Abidoye (2012). The use of this test statistic 
is not limited to Agriculture alone, but it is equally applicable in Medicine, Social sciences and Engineering and 
Technology.  
Table 3: Showing yields of sorghum in tons/ per acre for ten years (1998 – 2007). 
Years 1 2 3 4 5 6 7 8 9 10 
Zone A 1.0 1.2 1.1 1.2 1.18 0.9 1.3 0.9 1.08 1.0 
Zone C 2.60 3.38 3.48 3.32 3.49 2.80 3.38 2.80 2.60 2.62 
 
Computation on sorghum : From the data above the following summary statistics were obtained: 

Zone A:  10,0183.0,086.1 2 === AAA nSY
 

Zone C:  10,1538.0,047.3 2 === CCC nSY
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We need to verify the equality of the variances between these two zones. That is, testing the hypothesis; 
2
2

2
10 : σσ =H   vs  

2
1

2
20 : σσ >H  

),1,1(2
1

2
2

12
~ α−−= nnF

S

S
F  

 404.8
0183.0

1538.0 ==F    

Since Fcal =8.404> F9,9,(0.05)=3.18 we reject H0 and therefore conclude that the two variances are not equal.  
Hench, we can not use the normal t- test statistic, thus we use our recommended modified t – test statistic. 

In the above data set, 10=in ,  ∑
=
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The hypothesis to be tested is  

ACH µµ =:0 Vs ACH µµ >:1 ;
2
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     = 1.34733 
where    r = 20.966752 + 0.722882(n –2) – 0.000157(n-2)2 

                = 33.93 

Now p- value =  ( )ttPttP rr >=> )(  

                              

                    

 

( )34733.1>= rtP
 

                                                   
= 0.093393   

                                                   > 0.05 
This led to acceptance of H0 and we conclude that the mean yields of sorghum in the two zones are not 
significantly different.  
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