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Abstract 

This paper investigates the efficiency of four methods of estimating panel data models (Pooling (OLS), First-

Differenced (FD), Between (BTW) and Feasible Generalized Least Squares (FGLS)) when the assumptions of 

homoscedasticity, no autocorrelation and no collinearity are jointly violated. Monte-Carlo studies were carried 

out at different sample sizes, at varying degrees of heteroscedasticity, different levels of collinearity and 

autocorrelation all at different time periods. The results from this work showed that in small sample situation, 

irrespective of number of time length, FGLS estimator is efficient when heteroscedasticity is severe regardless of 

levels of autocorrelation and multicollinearity. However, when heteroscedasticity is low or mild with moderate 

autocorrelation level, both FD and FGLS are efficient, while BTW performs better only when there is no 

autocorrelation and low degree of heteroscedasticity. However, in large sample with short time periods, both FD 

and BTW could be used when there is no autocorrelation and low degree of heteroscedasticity, while FGLS is 

preferred elsewise. Meanwhile, Pooling estimator performs better when the assumptions of homoscedasticity, 

independent of error terms and orthogonality among the explanatory variables are justifiably valid. 
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1.    Introduction 

Panel data is a kind of data in which observations are obtained on the same set of entities at several periods of 

time. A panel dataset is one where there are repeated observations on the same units. The units may be 

individuals, households, firms, regions or countries. It has the combination of the characteristics of both time-

series and cross-sectional data. Hence, problems that generally afflict time-series data (i.e. autocorrelation) and 

cross-sectional data (i.e. heteroscedasticity) need to be addressed while analyzing panel data. Because of many 

distinctive features that usually characterise panel data as abound in many econometrics settings, the use of 

classical ordinary least squares (OLS) estimator for modelling such data becomes grossly inefficient.  

One of the critical assumptions of the classical linear regression model (CLRM) is that the error terms in the 

model are independent. If this assumption is violated, then serial correlation (or autocorrelation) is suspected (i.e. 

cov (uit, uis) ≠ 0, for t ≠ s). Also, the error terms are expected to have the same variance. If this is not satisfied, 

there is heteroscedasticity (i.e. var (uit) = σi
2
). (See Schmidt, 2005; Greene, 2008; Maddala, 2008; Creel, 2011; 

Wooldridge, 2012). Multicollinearity ensues when the assumption of “no linear dependencies in the explanatory 

variables” is violated. (See Chatterjee, 2006; Maddala, 2008; Gujarati & Porter, 2009). When multicollinearity is 

present in a model, there will be deterministic relationship among the exogenous variables such that one of the 

variables can be expressed as a linear function of at least one of the other variables. 

Not only this, perfect collinearity could render the estimates of the parameters indeterminate. For the cases 

where the estimates of the parameters are obtained, the associated confidence intervals tend to be too wide and 

the standard error becomes infinitely large, an indication of inherent inconsistence in the estimated parameters. 

In the presence of both autocorrelation and heteroscedasticity, the usual OLS estimators, although linear, 

unbiased, and asymptotically normally distributed, are no longer having minimum variance among all linear 

unbiased estimators. See Greene (2008), Baltagi et al. (2008), Olofin et al. (2010). Thus, the OLS estimator is 

not efficient relative to other linear and unbiased estimators under such situations. 

A number of works on the methodologies and applications of panel data modelling have appeared in the 

literature (Li and Stengos, 1994; Roy, 2002; Baltagi et al., 2005, 2008; Bresson et al., 2006; Olofin et al., 2010). 

Situations where all the necessary assumptions underlying the use of classical linear regression methods are 

satisfied are rarely found in real life situations. Most of the studies that discussed panel data modelling 

considered the violation of each of the classical assumptions separately. For instance, Lillard and Wallis (1978), 

Bhargava et al. (1983), Baltagi and Li (1995), Galbraith and Zinde-Walsh (1995) and Roy (1999; 2002) at 

different times did appreciable works on panel data with autocorrelated disturbances. Also, the studies of 

Mazodier and Trognon (1978), Rao et al. (1981), Magnus (1982), Baltagi and Griffin (1988) and Wansbeek 

(1989) focused on the existence of heteroscedasticity in panel data modelling. Notably among the works that 

considered the joint violation of the assumptions of homoscedasticity and no autocorrelation are those of Baltagi 
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et al. (2008) and Olofin et al. (2010). The major distinction in their studies is that Baltagi et al. (2008) considered 

one-way error component model while Olofin et al. (2010) considered two-way error component model. 

In this study, the methodologies of panel data modelling when the assumptions of no serial correlation, no 

multicollinearity and homoscedasticity are jointly violated are investigated. The efficiency of four methods of 

estimating panel data models is studied. The best estimator that is robust to the violations of the basic 

assumptions highlighted above among those considered are determined using absolute biases, variances and root 

mean square errors (RMSE) of parameter estimates. Results from this work would serve as useful guides to 

econometricians and students while modelling panel data that are characterized by the structure conjectured here. 

 

2.    Materials and Methods 

This work considers one-way error component model with two exogenous and one endogenous variables. 

Heteroscedasticity was implanted into the model via the individual-specific error component. This is in line with 

the works of Mazodier and Trognon (1978), Baltagi and Griffin (1988), Roy (2002) and many others. We 

considered first-order serial correlation as did Lillard and Wallis (1978) and Bhargava et al (1983) to mention 

but few. Most of the earlier works on panel data with autocorrelated disturbances and heteroscedasticity focused 

on single exogenous variable. We, however, considered two exogenous variables with the possibility of 

existence of collinearity between them and its effects with respect to stability and efficiency of the estimation 

methods for panel data models. 

2.1  A Classical Panel Data Model 

A general panel data model is given as 

Yit = αi + Xʹit β + uit     (1) 

where Yit is the response for unit i at time t, αi is the individual-specific intercept, vector Xʹit contains k regressors 

for unit i at time t, vector β contains k regression coefficients to be estimated and uit is the error component for 

unit i at time t, i = 1, 2, …., n and t = 1, 2, …, T. 

Specifically, we considered the panel data model that has two exogenous and one endogenous variables as 

shown below; 

                                               Yit = αi + β1X1it + β2X2it + uit     (2) 

where αi = α + εi. The individual-specific intercept (αi) captures the effects of those variables that are peculiar to 

the i
th

 individual and that are time-invariant. 

The model therefore becomes  

  Yit = α + β1X1it + β2X2it  + εi + uit     (3) 

where εi is the individual-specific error component and uit is the combined time-series and cross-section error 

component with variances σε
2
 and σu

2
 respectively. 

Suppose we let wit = εi + uit, then, model (3) becomes  

       Yit = α + β1X1it + β2X2it  + wit      (4) 

2.2   Brief Overview of Some Estimators of Panel Data Models Considered 

In this section, we provide brief theoretical formulations of the four estimators of panel data models as 

considered in this study. 

i.) Pooled Estimator (OLS): This Estimator stacks the data over i and t into one long regression with nT 

observations, and estimates of the parameters are obtained by OLS using the model (Greene, 2008). 

    y = X'β + w      (5) 

where y is an nT × 1 column vector of response variables, X is an nT × k matrix of regressors, β is a (k+1) × 1 

column vector of regression coefficients, w is an nT × 1 column vector of the combined error terms (i.e εi + uit) 

The Pooled estimator is given as 

                                                                         ��pooled = (X'X)
-1

X'y        (6) 

ii.) Between Estimator (BTW): This regresses the group means of Y on the group means of X’s in a regression 

of n observations. It uses cross-sectional variation by averaging the observations over period t (Creel, 2011; 

Wooldridge, 2012). Explicitly, it converts all the observations into individual-specific averages and performs 

OLS on the transformed data. 

Averaging model (7) above over t gives 

                                                                ���. = 	 + �����. + �����. + ���.     (7) 

where ���. =  ���  ∑ ����  , ���. =  ��� ∑ ����  and  ���. =  ���  ∑ ����  for i = 1, 2, 3, . . . n and j = 1, 2. 

iii.) First-Differenced Estimator (FD): This is the ordinary least squares estimation of the difference between 

the original model and its one-period-lagged model (Arellano, 2003; Baltagi, 2005). The FD model is given as  

∆Yit = β1 ∆X1it + β2 ∆X2it + ∆wit    (8) 

where ∆Yit = Yit - Yi, t-1; ∆X1it = X1it - X1i, t-1; ∆X2it = X2it – X2i, t-1; and ∆wit = wit – wi, t-1, for i = 1, 2, . . ., n and t = 

2, 3, . . ., T. 
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iv.) Feasible Generalized Least Squares Estimator (FGLS): The generalized least squares estimator for the 

model parameters is obtained from the OLS estimation of the transformed model as shown below: 

           yit
*
 = αi

*
 + Xʹit

*
 β + wit

*
 ;    (9) 

where yit
*
 = yit – λ��i.  ;  Xʹit

*
 = Xʹit – λ�i.  ; wit

*
 = λ�� i  αi

*
 = 1 – λ and  λ = 1 − �σ�� �σ�� +  Tσ!�"⁄  for i = 1, 2, ..., n 

and t = 1, 2, … , T 

The term λ gives a measure of the relative sizes of the within and between unit variances. The generalized least 

square estimator (GLSE) of the regression parameters using this method is given by 

                                                                    ��GLS = (X
*
ʹΩ

-1
X

*
)

 -1
 X

*
ʹΩ

-1
y

*
   (10) 

However, since the elements of the error variance-covariance matrix Ω are often unknown, their values are 

estimated from the data to have Ω�. Therefore, by replacing Ω in (10) with Ω� we have the feasible generalized 

least squares estimator (FGLSE) of model (9) given as 

                                                                     ��FGLS = (X
*
ʹΩ� -1

X
*
)

 -1
 X

*
ʹΩ� -1

y
*
   (11) 

which is more frequently used rather than the GLSE. 

One of the ways to estimate Ω is to first estimate λ using %&'� and %&(� such that λ = ) *+,-
*+,-./*+0-

 . Here, %&'� could be 

obtained from the error sum of squares (SSE) of the within effects or from the derivations of residuals from 

group means of the residuals (Hsiao, 2002; Arellano, 2003). Also, %&(� is derived from the between effects model 

(i.e group mean regression). See Baltagi (2005), Greene (2008), Creel (2011) and Wooldridge (2012) for more 

details. 

2.3    The Simulation Scheme 

The datasets used for this work were simulated using Monte Carlo experiments in the environment of R 

statistical package (www.cran.org). Two sizes of cross-sectional units (50 and 250), three time periods (10, 40, 

and 100), five levels of autocorrelation (ρ = ±0.9, ±0.5, 0), five levels of collinearity (r = ±0.9, ±0.5, 0) and three 

degrees of heteroscedasticity (low, mild & severe) were used for simulation. Each of the combinations was 

iterated 1000 times and the assessments of the various estimators considered in this work were based on the 

absolute bias, variance and RMSE of parameter estimates.  

The absolute bias (AB) of parameter �12 estimated over r replicates is defined by 

                                                     AB (�12) = 
�
3 ∑ 4�12� −  �243�5�                      (12) 

The variance of the estimator �12 is given by 

                                                    Var (�12) = 
�
3  ∑ 6�12� −  �1728�3�5�    (13) 

while its root mean square error is given by 

                                                      RMSE (�12) = )�
3  ∑ 9�12� −  �2:�3�5�    (14) 

where �12 indicates the k
th

 parameter being estimated for j = 1, 2, 3, . . ., r (number of iterations). 

After the above criteria were evaluated for each estimator, the performances were ranked and the best method 

was identified. A test of significance was carried out to test if the sums of ranks of other estimators are actually 

significantly different from that of the estimator proclaimed best. Because the ranks are on ordinal scale of 

measurements, a non-parametric statistical test developed by Milton Friedman (1939) was employed to perform 

this task.  

Thereafter, the pair-wise comparison test between a pair of estimators, say p and q, was performed using the 

least significant difference (LSD) with the test statistic given by:  

                                   ;<= =  >?@��A?2��A, 	)2CD ∑ ∑ E��� −  ∑ F��2�@�2� G ÷  ?D − 1A?I − 1A  (15) 

where k is the number of estimators, n is the number of repetitions (levels of collinearity), Ri is the sum of ranks 

for each estimator and rij
2
 is the square of the rank for each estimator at each level of multicollinearity.  

Based on this formulations, any two estimators, p and q, are declared to be significantly different in terms of 

their performances at a chosen type I error rate α, if the absolute difference of their ranks is greater than the 

estimated LSD value. 

 

3.     Results and Discussion 

The results of the performances of the estimators considered at various levels of autocorrelation, 

multicollinearity, and heteroscedasticity considered in this work are presented and discussed here. The four 

estimators were assessed using each of the criteria stated in Section 2.3. These estimators were ranked using the 

ranks 1, 2, 3 and 4 with rank 1 assigned to the best estimator that has the lowest value of the absolute bias, 

variance and root mean square error. A rank of 2 is assigned to the second best estimator and so on. 
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For instance, the performances of the estimators using variance criterion when we have 50 cross-sectional units 

and 10 time periods at all levels of autocorrelation and multicollinearity and degrees of heteroscedasticity are 

presented in Table 1. 

The ranks for each of the estimators were summed for all levels of multicollinearity to determine an estimator 

with lowest sum of ranks at each of the autocorrelation levels and degrees of heteroscedasticity. Here, the effects 

of multicollinearity are repressed to assess the upshots of autocorrelation and heteroscedasticity which are 

respectively the problems that are peculiar to time-series and cross-sectional data that are brass tacks of panel 

data. 

We present in Table 2, the sum of ranks that resulted from Table 1 for the four estimators considered in this 

study. 

The preference of these estimators at different sample sizes, different levels of autocorrelation and varying 

degrees of heteroscedasticity for each of the sample sizes used are presented in Table 3. 

It can be deduced from the above table that for N = 50; T = 10 at high level of autocorrelation and high level of 

multicollinearity, FD and FGLS estimators are not significantly different at low degree of heteroscedasticity, but 

FGLS outperforms others at mild and severe degrees of heteroscedasticity. Meanwhile, for low level of 

collinearity and high autocorrelation level, FD is preferred regardless of degree of heteroscedasticity. Any of FD 

and FGLS could be used for moderate level of collinearity at high autocorrelation level irrespective of the degree 

of heteroscedasticity.  

At moderate autocorrelation level and high level of collinearity, FD/BTW, FD and FGLS are preferred 

respectively at low, mild and severe degrees of heteroscedasticity. For middling levels of autocorrelation and 

multicollinearity, either of BTW and FD would produce efficient estimates for low degree of heteroscedasticity, 

FD is preferable for mild while any of FD and FGLS could be employed for severe degree of heteroscedasticity. 

Moreover, when there is no autocorrelation, BTW estimator which regresses the group means of the dependent 

variable on the group means of independent variables using OLS would return efficient estimates in spite of the 

degree of heteroscedasticity and level of collinearity excepting few cases where FD competes with it. 

 Apparently, the precedence of the estimators considered in this study based on the Monte-Carlo experiments 

carried out at varying degree of heteroscedasticity and levels of autocorrelation and multicollinearity for various 

sample sizes are displayed in the Table 3. The behaviours of the estimators differ as we change the levels and 

degree of the assumptions being violated for different sample sizes. 

 

4.   Conclusion 

Various results obtained in this work generally showed that the behaviours of the four estimators investigated for 

modeling various panel data vary as the violations are varied. Failure of the orthogonality assumption makes the 

OLS estimators to be biased and imprecise. For OLS to be accurately used in estimating the parameters of panel 

data models, errors have to be independent and homoscedastic. These conditions are so atypical and mostly 

unrealistic in many real life situations that would have warranted the use of OLS for modeling panel data 

efficiently. 

The efficiency of four methods of estimating panel data models with violations of homoscedasticity, no 

autocorrelation and no collinearity assumptions is principally and thoroughly addressed in this work. Our 

findings from Monte Carlo experiments for several combinations of violations show that in small sample, 

irrespective of number of time periods, FGLS is preferable when heteroscedasticity is severe regardless of 

autocorrelation level. But when heteroscedasticity is low or mild with moderate autocorrelation level, both FD 

and FGLS are preferred, while BTW performs better only when there is no autocorrelation and low degree of 

heteroscedasticity. That is, in large sample with little time periods, both FD and BTW could be used when there 

is no autocorrelation and low degree of heteroscedasticity.  

Also when the degree of heteroscedasticity is mild and there is no autocorrelation in large sample with little time 

periods, any of the FD and FGLS would produce efficient results. Finally, when severe degree of 

heteroscedasticity is present and autocorrelation is apparent in large sample regardless of time periods, FGLS is 

superior. Meanwhile, both FD and FGLS are suitable when there is low heteroscedasticity despite the existence 

of autocorrelation and multicollinearity. 

As general remark given the various results obtained in this study, it is always necessary to assess the degree of 

heteroscedasticity and level of autocorrelation while developing panel data models in order to ensure efficient 

results. In case there is more than one predictor in the model, the strength of relationship between or among the 

predictors needs to be examined for possible presence of multicollinearity in the data as to avoid erroneous 

inferences that may arise from the use of wrong method for estimating the model. 
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Appendix 

Table 1: Ranks of the Estimators Using Variance Criterion when N = 50 and T = 10 

 

Auto- 

correlatio

n level 

Estimat

or 

Multi = -0.9 Multi = -0.5 Multi = 0 Multi = 0.5 Multi = 0.9 

Heteroscedasticit

y 

Heteroscedasticit

y 

Heteroscedasticit

y 

Heteroscedasticit

y 

Heteroscedasticit

y 

Lo

w 

Mil

d 

Se

v 

Lo

w 

Mil

d 

Se

v 

Lo

w 

Mil

d 

Se

v 

Lo

w 

Mil

d 

Se

v 

Lo

w 

Mil

d 

Se

v 

 

-0.9 

OLS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

FD 2 2 2 1 1 2 1 1 1 1 1 2 2 2 2 

BTW 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

FGLS 1 1 1 2 2 1 2 2 2 2 2 1 1 1 1 

 

-0.5 

OLS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

FD 1 1 2 2 1 1 2 2 1 2 1 1 1 1 2 

BTW 2 3 3 1 2 3 1 1 3 1 2 3 2 3 3 

FGLS 3 2 1 3 3 2 3 3 2 3 3 2 3 2 1 

 

0 

OLS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

FD 2 3 1 2 2 3 2 2 3 2 2 3 2 3 1 

BTW 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 

FGLS 3 2 3 3 3 2 3 3 2 3 3 2 3 2 3 

 

0.5 

OLS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

FD 1 1 2 2 1 1 2 2 1 2 1 1 1 1 2 

BTW 2 3 3 1 2 3 1 1 3 1 2 3 2 3 3 

FGLS 3 2 1 3 3 2 3 3 2 3 3 2 3 2 1 

 

0.9 

OLS 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

FD 2 2 2 1 1 2 1 1 1 1 1 2 2 2 2 

BTW 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

FGLS 1 1 1 2 2 1 2 2 2 2 2 1 1 1 1 
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Table 2: Sum of Ranks of the Estimators Using Variance Criterion when N = 50 and T = 10 

Autocorrelation Level Estimator 
Degree of Heteroscedasticity 

Low Mild Severe 

 

-0.9 

OLS 20 20 20 

FD 7 7 9 

BTW 15 15 15 

FGLS 8 8 6 

 

-0.5 

OLS 20 20 20 

FD 8 6 7 

BTW 7 11 15 

FGLS 15 13 8 

 

0 

OLS 20 20 20 

FD 10 12 11 

BTW 5 5 7 

FGLS 15 13 12 

 

0.5 

OLS 20 20 20 

FD 8 6 7 

BTW 7 11 15 

FGLS 15 13 8 

 

0.9 

OLS 20 20 20 

FD 7 7 9 

BTW 15 15 15 

FGLS 8 8 6 
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Table 3: Preference of the estimators at varying degrees of heteroscedasticity and autocorrelation and 

multicollinearity levels for the various sample sizes considered 
Cross-

sectional 

units 

Time 

Periods 

Multicollinearity 

Level 

Degree of 

Heteroscedasticity 

Autocorrelation Level 

± 0.9 ± 0.5 0 

 
 

 

 
 

 

 
 

 

 
 

 

 
50 

 
 

 

 
10 

 
± 0.9 

Low FD, FGLS FD, BTW BTW, FD 

Mild FGLS FD BTW, FD 

Severe FGLS FGLS FD 

 

± 0.5 

Low FD, FGLS BTW, FD BTW 

Mild FGLS, FD FD BTW 

Severe FD, FGLS FD, FGLS   BTW, FD 

 
0 

Low FD BTW BTW 

Mild FD BTW, FD BTW 

Severe FD FD, FGLS BTW 

 

 
 

 

40 

 

± 0.9 

Low FGLS FD BTW 

Mild FGLS FD FD 

Severe FGLS FGLS FD, FGLS 

 
± 0.5 

Low FGLS, FD FD, BTW BTW, FD 

Mild FGLS, FD FD, BTW BTW, FD 

Severe FGLS FD, FGLS FD 

 

0 

Low FGLS, FD BTW, FD BTW, FD 

Mild FGLS, FD BTW, FD BTW 

Severe FGLS, FD FD BTW 

 
 

 
 

100 

 
± 0.9 

Low FGLS FGLS FGLS, FD 

Mild FGLS FGLS FD 

Severe FGLS FGLS FGLS 

 

± 0.5 

Low FGLS FGLS, FD FD 

Mild FGLS FGLS, FD FGLS, FD 

Severe FGLS FGLS, FD FGLS, FD 

 

0 

Low FGLS, FD FD BTW 

Mild FGLS, FD FGLS, FD BTW, FD, FGLS 

Severe FGLS, FD FGLS, FD FGLS, FD 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

250 

 

 
 

 

10 

 

± 0.9 

Low FGLS FD, FGLS FD, FGLS 

Mild FGLS FGLS FD, FGLS 

Severe FGLS FGLS FD, FGLS 

 

± 0.5 

Low FD, FGLS FD, FGLS BTW, FD, FGLS 

Mild FGLS FGLS FD, FGLS 

Severe FGLS FGLS FD, FGLS 

 

0 

Low FD, FGLS FD, FGLS BTW, FD 

Mild FD, FGLS FD, FGLS BTW, FD, FGLS 

Severe FD, FGLS FD, FGLS FD, FGLS 

 

 

 
 

40 

 

± 0.9 

Low FGLS FD FD, FGLS 

Mild FGLS FGLS FD, FGLS 

Severe FGLS FGLS FGLS 

 

± 0.5 

Low FGLS FD, FGLS BTW, FD, FGLS 

Mild FGLS FGLS FD, FGLS 

Severe FGLS FGLS FD, FGLS 

 

0 

Low FD, FGLS FD, FGLS BTW, FD, FGLS 

Mild FGLS FD, FGLS BTW, FD, FGLS 

Severe FGLS FGLS FD, FGLS 

 
 

 

 
100 

 
± 0.9 

Low FGLS FGLS FD, FGLS 

Mild FGLS FGLS FGLS 

Severe FGLS FGLS FGLS 

 

± 0.5 

Low FGLS FGLS FD, FGLS 

Mild FGLS FGLS FD, FGLS 

Severe FGLS FGLS FD, FGLS 

 
0 

Low FGLS FD, FGLS BTW, FD, FGLS 

Mild FGLS FD, FGLS FD, FGLS 

Severe FGLS FGLS FD, FGLS 

Note that the boldfaced estimators are the ones with lowest sums of ranks, while other estimator(s) in the same 

cell with them are not significantly different from them as established by their respective least significant 

difference (LSD) statistical tests. 
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