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Abstract 

In this paper we have suggested a class of estimators for population mean using auxiliary information in two-

phase sampling. When the population mean X  is not known, a class of estimators for finite population mean 

∑
=

=
N

1i

iy
N

1
Y  of the study variable y has been suggested. Expressions of bias and mean squared error are 

obtained upto the first order of approximation. Asymptotically optimum estimators (AOE’s) are also identified 

with its mean squared error formula. We found that proposed class of estimator are better than usual ratio and 

other estimators.  

 

1.1 Introduction 

  Whenever there is auxiliary information available, the investigator wants to use it in the method of 

estimation which yields larger efficiency. Ratio, regression and product methods of estimation are good 

examples in this context. When the population mean �� of the auxiliary variable � is known a large number of 

estimators for the population mean �� of the study variable � is available in the literature for instance see Singh, 

H. P. (1986) and Singh, S. (2003) and the references cited therein. It is observed in the literature that the 

efficiency of the ratio and product estimators may be increased to the efficiency of regression estimator by 

making use of prior knowledge of  � = 	 
���
�, where 	 is the correlation coefficient between the study variable � and auxiliary variable �, ��  and ��  are the coefficients of variation of � and �  respectively. Sacrificing the 

consistency of estimators researchers including Upadhyaya and Singh (1985), Srivastava (1974), Prasad (1989) 

and Lui (1990) have found the way by which the efficiency an estimator can be increased beyond the regression 

estimator of the mean �� in case of known population mean ��. 

  When the population mean ��  of the auxiliary variable � is not known, it is often estimated from a 

preliminary large sample on which only the auxiliary variable � is observed. The value of the population mean �� 

of the auxiliary variable � is then replaced by this estimate. This procedure is known as the double sampling or 

two-phase sampling. Throughout, samples have been drawn by the method of simple random sampling without 

replacement (SRSWOR). The sample survey statisticians have presented several modifications of the classical 

two-phase sampling ratio and product estimators and studied their properties. They have shown that the 

efficiency of their estimators can be increased maximum upto usual two-phase sampling regression estimator by 

using of the well known optimum choice � = 	 
���
�,  for instance see Srivastava (1970, 81), Gupta (1978) and 

Adhvaryu and Gupta (1983). 

  In this paper we have made an effort to suggest a class of estimators using auxiliary information in two-

phase sampling and studied its properties. When the population mean �� is not known, a class of estimators for 

finite population mean ∑
=

=
N

1i

iy
N

1
Y of the study variable y has been suggested. A large number of estimators 

are identified as the member of the proposed class of estimators. Expressions of bias and mean squared error are 

obtained upto the first order of approximation. Asymptotically optimum estimators (AOE’s) are also identified 

with its mean squared error formula. 

 

1.2 Two-Phase Sampling Procedure  

  Consider the finite population � = ���, ��, … , ��� of � identifiable units. Let � and � be the variable 

under study and the auxiliary variable respectively. Further let ��  be the unknown real variable value of � and �� 
be the known variable value of � associated with �� , �� = 1,2, … , ��. The problem of estimating the population 

mean  ∑
=

=
N
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1
Y  of the study variable � when the population mean ∑

=
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ix
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1
X  of the auxiliary variable 
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� is known has been dealt at a grater length. However, in many practical situations when the population mean �� 

is unknown a prior, the procedure of double sampling is used. Allowing, simple random sampling without 

replacement (SRSWOR) design in each phase, the two-phase (or double) sampling scheme will be as follows: 

 

(i) The first-phase sample ����� ⊂ �� of fixed size !� is drawn to observe only � in order to furnish a 

good estimate of the population mean ��. 
(ii) Given ��, the second phase sample ��� ⊂ ��� of fixed size ! is drawn to observe � only.       

Let  �#� = �$% ∑ ��$%�'� , �� = �$ ∑ ��$�'�  and  �# = �$ ∑ ��$�'� .    
Further we write 

         �� = ���1 + )*� 

         �# = ���1 + )��           �#� = ���1 + )��        1.2.1 

Such that  
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where 

  �� = +�,� , �� = +
-�  , .�� = ���/�� ∑ ��� − ������'�   

and  

  .�� = ���/�� ∑ ��� − ������'� .  
1.3 Proposed Class of Estimators 

  Motivated by Gangele (1995) and Gupta (1978), we define a class of estimators for population mean �� 

in two-phase sampling as 

       ��123 = ∑ 4�5�'* �� 
 �#�#%��6 ,                                                              1.3.1 

where 4�′ ��� = 0,1,2,3� are suitably chosen constants whose sum need not be unity, 9 is a suitably chosen scalar 

takes value +1 for product-type estimator and −1 for ratio-type estimator; �#� is a first phase sample mean based 

on !� observations and ���, �#� are second phase sample means of ��, �� respectively based on ! observations. 

Some members of the proposed class of estimators are shown in Table-1.3.1. 

  

1.2.2 
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Table-1.3.1 

Some members of the class of estimators ��123 

S. 

No. 

Estimator Choice of constants 4* 4� 4� 45 9 

1 The mean per unit 

 �� = �$ ∑ ��$�'�  

 

1 

 

0 

 

0 

 

0 

 

- 

2 The classical two-phase sampling 

ratio estimator 

 ��:3 = �� 
�#%�# � 

 

 

0 

 

 

1 

 

 

0 

 

 

0 

 

 

-1 

3 The classical two-phase sampling 

product  estimator 

 ��;3 = �� 
 �#�#%� 

 

 

0 

 

 

1 

 

 

0 

 

 

0 

 

 

1 

4 Srivastava (1970) estimator 

 ���3 = �� 
�#%�# �6
 

 

0 

 

1 

 

0 

 

0 

 −9 

5 Chakraberty (1968), Vos (1980), 

Adhvaryu and Gupta (1983) type- 

estimator  ���3 = 4*�� + �1 − 4*��� <�#��# = 

 

 

 4* 

 

 

 �1 − 4*� 

 

 

 

0 

 

 

 

0 

 

 

 

-1 

6 Vos (1980), Adhvaryu and Gupta 

(1983) type estimator  ��53 = 4*�� + �1 − 4*��� < �#�#�= 

 

 4* 

 

 �1 − 4*� 

 

 

0  

 

 

0 

 

 

1 

�4, 9� being constants. 

1.4 Bias and Mean Squared Error 

  To obtain the bias and mean squared error of the proposed class of estimators ��123 , we express it in 

terms of )′� we have  ��123 = ∑ 4�5�'* ���1 + )*��1 + )���6�1 + )�′ �/�6 .  
or ��123 = ���1 + )*� ∑ 4�5�'* �1 + )���6�1 + )�′ �/�6 .                                     1.4.1 

We assume that the sample size ! and !��!� > !� are large enough so that |)�| < 1 and A)�′ A < 1. 
i.e. B�#/-�-� B < 1 and B�#%/-�-� B < 1. 
and �1 + )�� and �1 + )�′ � are expandable. 

Expanding the right hand side of (1.4.1) we have ��123 = �� ∑ 4�5�'* �1 + )*� C1 + �9)� + �6��6/��� )�� + ⋯ E ×                                                                                     C1 − �9)�′ + �6��6G��� )�′� + ⋯ E  

or 

��123  = �� H 4�
5

�'* I1 + )* + �9)� + �9)*)� + �9��9 − 1�2 )�� − �9)�′ − �9)*)�′ −                                    ��9�)�)�′
+ �9��9 + 1�2 )�′� + �9��9 − 1�2 )*)�� − ��9�)*)�)�′ −                                    ��9���9 − 1�2 )��)�′
+ �9��9 + 1�2 )*)�′� + ��9���9 + 1�2 )�)�′� + ⋯ J. 

Neglecting terms of )′� having power greater than two we have  ��123  = �� ∑ 4�5�'* K1 + )* + �9�)� − )�′ �  + �9�)*)� − )*)�′ � − ��9�)�)�′  +                                   �6��6/��� )�� + �9�9+12)1′2.or 

 ��123 − ��� = �� K∑ 4�5�'* K1 + )* + �9�)� − )�′ �  + �9�)*)� − )*)�′ � −                                ��9�)�)�′  +  �6��6/��� )�� + �9�9+12)1′2−1.                   
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 1.4.2 

  Taking expectation of both sides of (1.4.2) and using the expected values given by (1.2.2) we get the 

bias of ��123 to the first degree of approximation as 

L
��123� = �� M∑ 4�5�'* M1 + 
�$ − �$′
� �9����  +  �6��6/��� 
�$ − ��� ���− �6��6/��� 
 �$′

− ��� ��� N − 1N    

               = �� K∑ 4�5�'* K1 + 
�$ − �$′
� �9����  +  
�$ − �$′

� �6��6G��� ���O − 1O  

i.e. L
��123� = �� K∑ 4�5�'* K1 + 
�$ − �$′
� �9��� 
� + ��6/��� � O − 1O.               1.4.3  

Squaring both sides of (1.4.2) and neglecting term of )′� having power greater than two we have 

 PQRST − PQ�U =                PQU

VW
WW
WW
WW
WW
WW
WW
WX Y + ∑ SZU[Z'\

]̂_̂
` Y + Ua\ + UZbcaY − aY′ d+eZbca\aY − a\aY′ d + a\U+ZUbUcaY − aY′ dU − UZUbUaYaY′+Zb�Zb − Y�aYU + Zb�Zb + Y�aY′Uf̂ĝ

h

+U ∑ SZ[Z�Zij�'\ Sj
]̂_̂
` Y + Ua\ + �Z + j�bcaY − aY′ d+a\U + U�Z + j�ca\aY − a\aY′ d−�Z − j�UbUaYaY′ + b�ZGj�U �b�Z + j� − Y�aYU+ b�ZGj�U �b�Z + j� − Y�aY′U f̂ĝ

h

−U ∑ k Y + a\ + ZbcaY − aY′ d+Zbca\aY − a\aY′ d−ZUbUaYaY′ + Zb�Zb/Y�U aYU +  Zb�ZbGY�U aY′U
l[Z'\ mn

nn
nn
nn
nn
nn
nn
no

. 

1.4.4 

Taking expectation of both sides of (1.4.4) using the result in (1.2.2) we get the MSE of ��123 to the first degree of 

approximation as 

 

   p.q
��123� = ���r1 + ∑ 4��5�'* s� + 2 ∑ 4�5��it�'* 4ts�t − 2 ∑ 4�L�5�'* u,   1.4.5 

where s� = K1 + 
�$ − ��� ��� + 
�$ − �$′
� �9�4� + 2�9 − 1����O �� = 0,1,2,3�,  s�t = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 6��Gt�� �4� + 9�� + w� − 1����O   ���< w� = 0,1,2,3�,  L� = K1 + 
�$ − �$′

� �9 
� + ��6/��� � ���O �� = 0,1,2,3�.  
 

Expression (1.4.5) can be rewritten as 

p.q
��123� = ��� M 1 + 4*�s* + 4��s� + 4��s� + 45�s5+2�4*4�s*� + 4*4�s*� + 4*45s*5 + 4�4�s�� + 4�45s�5 + 4�45s�5�−2�4*L* + 4�L� + 4�L� + 45L5� N,  
1.4.6 

where 

  L* = 1,  
  L� = K1 + 
�$ − �$′

� 4 C� + �6/��� E ���O,  
  L� = K1 + 
�$ − �$′

� 24 C� + ��6/��� E ���O,  
  L5 = K1 + 
�$ − �$′

� 34 C� + �56/��� E ���O,  
  s* = K1 + 
�$ − ��� ���O,  
  s� = K1 + 
�$ − ��� ��� + 
�$ − �$′

� 9�4� + 29 − 1����O,   
  s� = K1 + 
�$ − ��� ��� + 
�$ − �$′

� 29�4� + 49 − 1����O,  

( 
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  s5 = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 39�4� + 69 − 1����O,  

  s*� = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 6� �4� + 9 − 1����O,  

  s*� = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 9�4� + 29 − 1����O,  

  s*5 = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 56� �4� + 39 − 1����O,  

  s�� = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 56� �4� + 39 − 1����O,  

  s�5 = K1 + 
�$ − ��� ��� + 
�$ − �$′
� 29�4� + 49 − 1����O,  

and 

  s�5 = K1 + 
�$ − ��� ��� + 
�$ − �$′
� y6� �4� + 59 − 1����O.  

Differentiating the p.q
��123� given in (1.4.6) with respect to 4�′�, �� = 0,1,2,3�  partially and equating them to 

zero we have 
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α
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                                                            1.4.7 

Solving (1.4.6) we get the optimum values of constants 4�′ �, �� = 0,1,2,3� as 

  

∆

∆
=

∆

∆
=

∆

∆
=

∆

∆
=

∗∗

∗∗

3
3

2
2

1
1

0
0

       

     ,

αα

αα

                              1.4.8 

where 
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Putting the optimum values 4�∗ of 4� �� = 0,1,2,3� in (1.6) we get the minimum MSE of proposed estimator  ��123 

as p.q
��123� = ���|1 − 4*∗ − 4�∗L� − 4�∗L� − 45∗L5}.                               1.4.9  

or p.q
��123� = ��� K1 − �∆�G∆%�%G∆���G∆����∆ O.                                        1.4.10 

Thus we established the following theorem. 

Theorem 1.4.1. To the first degree of approximation, p.q
��123� ≥ ��� K1 − �∆�G∆%�%G∆���G∆����∆ O,  
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with equality holding if 4*∗ = ∆�∆ , 4�∗ = ∆%∆ , 4�∗ = ∆�∆ , 45∗ = ∆�∆ .  
It is to be noted that the biases and mean squared errors of the estimators belonging to the class ��123 can be 

obtained easily from (1.4.3) and (1.4.6) respectively just by putting the suitable values of the scalars 4��� =0,1,2,3� and 9. It is to be noted that any member of the class will not have MSE/minimum MSE smaller than 

that of the proposed class of estimators ��123.   

  It is to be noted that some empirical studies need to be conducted in order to find out situations where 

some members of the proposed class ��123 are found to be better than usual unbiased estimator ��, double sampling 

ratio ��:3 ,  product ��;3,  regression estimator ( ����3 = �� + ����#� − �#�, ��  being the sample estimate of the 

population regression coefficient �), Srivastava (1970) estimator ����3� and other existing estimators. Probably a 

well designed Monte Carlo study will be quite useful and may throw some light on it.    

Remark 1.4.1 In similar fashion the properties of the proposed class of estimator ��123 can be discussed in the 

case “when the second phase sample of size ! is drawn independently of the first phase sample of size !�”. 
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