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Abstract

In this paper we work out generalized complete L-Fuzzy Metric Space and Common Fixed Point Theorems
which is a generalization of results in Aibi et al [1].
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1. Introduction and Preliminaries:

The concept of fuzzy set was introduced initially by Zadesh [23] in 1965.Which are a generalization of
fuzzy metric and intuitionist fuzzy metric space. Various concepts of fuzzy metric space were considered in [7, 8,
13, 14].In this sequel we shall adopt the usual terminology.

Definition 1.1: [11] Let L = (L,S L) be a complete lattice, and U a non-empty set called a universe. An L -

fuzzy set A on U is defined a mapping 4 : U — L . For eachuinU , A(u) represents the degree (in L) to

which u satisfies A .
Lemma 1.1: [5, 6] consider the set L * and the operation < 1+ defined by:

L*= {(xl’xz) : (xl,xz) € [0,1]2 and x, +x, < 1} ,

(xl,xz)SL* (yl,y2)<:> x, <y and x,y,, for every (xl’xz),(yl,yz)e L* . Then (L*,SL*) is a
complete lattice and convention of L- fuzzy metric spaces introduced by saadatiel. [19]

Classically, a triangular norm 7" on ([0,1],£) is defined as an increasing, commutative, associative
mapping T : [0,1]2 - [0,1] satisfying T(l,x) =x, forallx € [0,1].

These definitions can be straightforwardly extended to any lattice L = (L,S L) . Define first
0, =mnfL and 1, =sup L.

Definition 1.2: A triangular norm (l‘ —norm) on L is a mapping T : L’ — L satisfying the following

conditions:
1. (Vx € L) T(x,lL ) = x); (Boundary condition)
2. (V(x,y) € LZ) T x,y) = T(y,x)); (Commutativity)
3. (‘v’(x,y,z) el (T(x,T(y,z)) = T(T(x,y),z)); (Associativity)
4. (V(x,x'y,y') € L4)(x <, x'and y<, y'= T(x,y)SL T(x',y')).
(Monotonicity)

A t-norm T on L is said to be continuous if for any X, y € L and any sequences {xn} and {yn}

which converge X toand y we have
lirrlnT(xn,yn) = T(x,y)
For example, T(x,y) :min(x,y) and T(x,y) = Xy are two continuous f-norms on [0,1]. A t-norm

can also be defined recursively as an (n + l)fary operation (n eN ) by ' =T and

T" (XX, ) = T(TH (xl,...,xn),xn+l)

21



Mathematical Theory and Modeling wWww.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) b rl
Vol.3, No.9, 2013-Special issue, International Conference on Recent Trends in Applied Sciences with Engineering Applications “s E

forn>2 and x, € L.

Definition 1.3: A negation on L is any decreasing mapping N : L — L satisfying N (0 L) =1, and
N(IL ) =0, .1t N(N(x)) = xVx € L Then N is called an involutive negation.

Definition 1.4: The 3-tuple (X,M ,T) is said to be an L —fuzzy metric space if X is an arbitrary (non-

empty) set, I is a continuous t-norm on L and M is an L -fuzzy set on X 2><]0, +o0[ satisfying the
following conditions for every X, ),z in X and ¢, s in]0,+oq[:.

2) M (xyt)>,0,;
b) M (x,y,t)=1, forall £>0 ifand onlyif x = y,
o M (xpt)=M (xy1);

d) T (M (x,3.1),M (y,z,s))SLM (x,z1+s);
e) M (x, y,.) :]0,00[— L is continuous and lim , , M (x, y,l‘) =1,
Let (X,M,T) be an L —fuzzy metric space. For f€]0,+[, , we define the open ball
B(x, r,l) < A with center x € X and a fixed radius 7 € L {OL ,lL} as
B(x,r,t) = {y eX:M (x,y,t) > N (r)}
A subset A X is called open if for each x € A, there exist >0 and r €L\ {OL , IL} such that
B (x, rt ) c A.Let T, denote the family of all open subsets of X . Then T, is called the topology induced

by the L —fuzzy metric M .
Example 1.1: [21] Let (X,d) be a metric space. Denote I’ (a,b)z(albl,min(az+b2,l)) for all

a=(a,,a,) and b=(b,,b,) in L* and let M and N be fuzzy sets on X7?x]0,+00[ be defined as

follows:

t d(x,y)
t+d(x,y) t+d(x,y)

My (x:y,t) = (M(x,y,t)) =

Then (X,M ;T ) is an intuitionistic fuzzy metric space.

Example 1.2: [1] Let (X,d) be a metric space. Denote T (a,b)=(a,b,min(a, +b,,1)) for all

a=(a,,a,) and b=(b,,b,) in L* andlet M and N be fuzzy sets on X~ x(0,0) defined as follows:
ht" d(x,y)

ht" +md(x,y) " ht" +md(x,y)

forall t,h,m,n e R" . Then (X,M wuno L ) is an intuitionistic fuzzy metric space.

My (x0:1) :(M(x,y,t),N(X,y,l‘)) B

Lemma 1.2: [10] Let (X M,T ) be an L -fuzzy metric space. Then, M (x, Vit ) is nondecreasing  with
respect to ¢, forall x,y in X .

Definition 1.5: A sequence {xn} in an L -fuzzy metric space (X,M ,T ) is called a Cauchy sequence, if

neN
foreach &£ € L\ {OL} and ¢ > 0 there exists 7, € N such that forallm > ny (n>m>n,),

M (xm,xn,t)>LN (6‘)
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The sequence {xn }neN is said to be convergent to X € X in the L -fuzzy metric space (XM ,T )

(denoted by X, L))C) if M (xn,x,l) =M (x,xn,t) —> 1, whenever n — +oo for every t>0 AL -

fuzzy metric space is said to be complete if and only if every Cauchy sequence is convergent.
Henceforth, we assume that T is a continuous t-norm on the lattice L such that for every

,UEL\{OL,IL} , there is a ﬁEL\{OL,IL} such that
T"" (N (4),...N (4))>, N (u)

For more information see [19].
Definition 1.6: Let (X,M,T) be an L —fuzzy metric space. M is said to be continuous on
X x Xx]0,00[ if

limM (x,,y,.t,) =M (x,,7)

n—x0

Whenever a sequence {(xn,yn,tn )} in X x Xx]0,00[ converges to a point (x,y,l) € X x Xx]0,00 ie.,
lim M (xn,x,l) =lim, M (yn,y,t) =1, andlim, M (x,y,tn) =M (x,y,l) .

Lemma 1.3: Let (XM ,T) be an L -fuzzy metric space. Then, M is a continuous function on
X x Xx]0,00[ .

Proof: The proof is the same as that for fuzzy spaces (see Proposition 1 of [15]).
Definition 1.7: Let A and S be mappings from an L —fuzzy metric space into itself. Then the mappings are
said to be weak compatible if they commute at their coincidence point, that is, Ax = Sx implies that

ASx = SAx .

Definition 1.8: Let A and S be mappings from an L —fuzzy metric space into itself. Then the mappings are
said to be weak compatible if

limM (A4Sx,,SAx,,t)=1,Vt >0

n—0

Whenever {xn } is a sequence in X such that

limAx, =limSx, =xe X

n—>0 n—>0
Proposition 1.1: [22] If self-mappings A and S of an L —fuzzy metric space (XM ,T ) are compatible,
then they are weak compatible.

Lemma 1.4: [1,19] Let (XM ,T ) be an L —fuzzy metric space. Define E, ; :
X? 5> R+U{0} by
E,u (x,y) = inf{t > Oz(x,y,t) > N (/1)}

Foreach A € L\{OL :IL} and X,y € X . Then we have
i) Forany i € L\{OL IIL} there exists 4 € L\{OL :lL} such that

E#,M (xl,xn)SELM (xl,xn)+ELM (xz,x3)+...+ELM (xn_l,xn)

for any x,,...,x, € X;
ii) The sequence {x”}neN is convergent to X w.rt. L -fuzzy metric M if and only if
E,u (xn,x) —0.
Also the sequence {xn }neN is Cauchy w.r.t. L —fuzzy metric M if an only if it is Cauchy with £, .

Lemma 1.5: Let ()(,M ,T ) be an L —fuzzy metric space. If
M (x,,x,,,t)2, M (xo,xl,k”t)
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for some K >1 and 7 € N. Then {xn} is a Cauchy sequence.

Definition 1.9: [9] We say that the L. —fuzzy metric space (X,M ,T ) has property (C ) , if it satisfies the
following condition:

M (x,y,t)= C, for t >0 implies C =1,
2. Main Results: Theorem 2.2:

Let A,B,S and T be self-mappings of a complete L-fuzzy metric space (X,M,T)which has property ©
satisfying
i) A(X)QT(X),B(X)QS(X) and T(X) or S(X) is a closed subset of X .
ii) The pair (A,S ) and (B,T ) are weakly compatible and (A,S ) or (B,T ) satisfy the property ©
iii)
M(Ax,By,Bz,t)
M (Sx,Ty,Tz,kt),M (Sx,By,Tz,kt),M (Sx,Ty,Bz,kt),M (Sx,By,By,kt)
>¢,| M (Ty, By, Bz,kt),M (Ty,Ty, Bzkt),M (Ty, By, By,kt),M (Ty, Bz, Bz, kt)
M (By,Ty,Tz,kt),M (By,By,Tz,kt),M (By,Tz,Tz,kt ) ,M (Tz, Bz, Bz, kt)
The A,B,S and T have a unique common fixed pointin X .
Proof: Let the pair (B , T ) satisfy in property (E ) , hence there exist a sequence {xn} such that,

limM (Bx,,u,u,t)=limM (Tx,,u,u,t) =1

n—0 n—0

For some # € X and every f>0 . there exist a sequence {yn} such that, Bx, =Sy, hence
limM (Syn,u,u,t)zl

n—0

We prove that limM (Ayn,u,u,t) =1. Since
M (Ay,,Bx,,,.t)

M (Sy Ix,,Tx kt),M (Sy ,Bx ,Tx

n+lz>

kt),M (Tx,,Tx,,Bx,,,,

kt),M (Brx,,Tx,,T.
k)M (Tx,,,., Bx

kt),M (Syn,Txn,Bx

n+l>

kt)

kt )

n+l>

M (Sy,,Bx,,Bx,,kt),M (Tx,, Bx
(Tx Bx,,Bx, kt) ( ,Bx
M (

n+l2

kt)

n+1’

Bx

n+l>

n+1’ n+1’
Bx,,Bx,,Tx, kt),M (Bx,,Tx,,,,Tx

n+l? n+l?

n+lz?> n+l2 kt)

On making # —> o0 the above inequality, we get
limM (Ay,,Bx,, Bx,,,,t) =1

n—0

> ¢, (M (u,u,u,kt)M (u,u,u,kt),...,M (u,u,u,kt))z

Therefore , limM (Ayn,u,u,t) =1, hence

hmAy —thy =limBx, =lim7Tx, =u

n—»0 n—>0
Let S (x) be complete M —fuzzy metric space, then there exist X € X such that Sx =u . If Ax #u , then

we have
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M (Ax,Bx,,Bx,., 1)
M (Sx,Tx,,Tx,.,,
M (Sx,Bx,,Bx,,kt),M (Tx,, Bx,, Bx,.,,
M (Tx,,Bx,,Bx,,kt),M (Tx,,Bx,,,, Bx,.,.kt),M (Bx,,Tx,,Tx,,,, kt )
M (Bx,,Bx,,Tx,,,kt),M (Bx,,Tx,.,,Tx,, .kt ),M (Tx,,,., Bx

n+l? n+l? Bx

kt),M (Sx,an,Tx

n+lz>

kt),M (Sx,Txn,anH,kt)

kt),M (Tx,,Tx,,Bx,,,,kt)

n+l2
— 7L

n+l° kt)

n+lz?> n+l>

On making # —> o0 we get M (Ax,u,u,t) =1, hence Ax=u=Sx.By (A,S) be weakly compatible, we
have ASx = SAx, so

AAx = ASx = SAx = SSX
as AX < TX , there exist U € X such that Ax =T . We prove that Tv = Bv . If T # Bv then
M (4x, Bv, B, 1)

M (Sx,Tv,Tv,kt),M (Sx, Bv,Tv,kt),M (Sx,Tv, Bv,kt),M (Sx, Bv, B, kt)
> ; ¢| M (Tv,Bv,Bu,kt),M (Tv,Tv, Bu,kt),M (Tv, Bv,Bv,kt),M (Tv, Bv, B, kt)

M (Bv,Tv,Tv,kt),M (Bv,Bv,Tv,kt),M (Bv,Tv,Tv,kt),M (Tv, Bv, B, kt)
Bu #u then

M (Ax,Bv,Bv,t)>M (A4x, Bv, Bu,t)

Is a contradiction. Thus 7v=Bv=u . By B and T be weakly compatible, we get
TTv=TBv=BTv=BBv,so Tu =Bu .Weprove Au=1u, for

M (Au,u,u,t)zM (Au,BU,BU,t)

M (Su,Tv,Tv,kt),M (Su,Bv,Tv,kt),M (Su,Tv,Bv,kt),M (Su, Bv, Bv, kt)
> ; ¢| M (Tv,Bv,Bu,kt),M (Tv,Tv, Bu,kt),M (Tv, Bv, Bv,kt),M (Tv, Bv, B, kt)

M (Bv,Tv,Tv,kt),M (Bv,Bv,Tv,kt),M (Bv,Tv,Tv,kt),M (Tv, Bv, B, kt)
Au #u then

M (Au,u,u,t)>M (Au,u,kt)

Is a contradiction. Thus Au = Su =u . Now, we prove Bu =1u . For

M (u,Bu,Bu,t)zM (Au,Bu,Bu,t)

M (Su,Tu,Tu,kt),M (Su,Bu,Tu,kt),M (Su,Tu,Bu,kt),M (Su,Bu,BuU,kt)
> ; ¢| M (Tu, Bu, Bu,kt),M (Tu,Tu, Bu,kt),M (Tu, Bu, Bu,kt),M (Tu, Bu, Bu,kt)

M (Bu,Tu,Tu,kt),M (Bu, Bu,Tu,kt),M (Bu,Tu,Tu,kt),M (Tu, Bu, Bu,kt)
Bu # u then

M (u,Bu,Bu,t) >M (u,Bu,Bu,kt)

Is a contradiction. Thus A = Bu=Su=Tu=u.So, A,B,S and T have a fixed common point 2 .

If

Now to prove uniqueness, if possible  # ¢ be another common fixed point of 4, B, S and T . Then
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M (v,u,u,t)=M (Av, Bu,Bu,t)
M (Sv,Tu,Tu,kt),M (Sv, Bu,Tu,kt),M (Sv,Tu, Bu,kt),M (Sv, Bu, Bu, kt )

> ; ¢| M (Tu, Bu, Bu,kt), M (Tu,Tu, Bu,kt),M (Tu, Bu, Bu,kt),M (Tu, Bu, Bu,kt) is
M (Bu,Tu,Tu,kt),M (Bu,Bu,Tu,kt),M (Bu,Tu,Tu,kt),M (Tu, Bu, Bu,kt)

> M (v, u,u, kt)

contradiction.
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