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Introduction 

Power system network consists of generation, transmission and distribution sub networks and on the whole it is 

balanced i.e. symmetric. When faults occur, even though excitation may become unbalanced but the network 

remains normally balanced. These symmetries which are inherent in the power system satisfy mathematical 

group theoretical axioms. Feasibility multiphase power transmission was discussed by Stewart and Wilson 

(1978).  

A few balanced faults occur on a real power transmission system and their fault analysis is easy. On the 

other hand line-to-ground faults, which are unsymmetrical in nature, are more likely to occur and their analysis 

requires an important tool, namely, the theory of symmetrical components. L.P.Singh and his coworkers(1979,81) 

employed the inherent symmetries of a power system network satisfying group theoretic axioms. This makes  

possible to derive the symmetric and Clarke’s component transformation in a unified and systematic manner 

which can be applied for 4-phase and 6-phase networks. 

 Although five-phase system are not at present in practice, they serve to indicate the type of symmetrical 

sets which result from the resolution of a system having more than three-phases. When the number of vectors or 

phases of a system are prime, as in the three and five-phase cases, each component set of sequence higher than 

zero has n-individual vectors where as when the number of phases is not prime, as in the six-phase system, some 

of the component sets contain superimposed vectors and thus appear not to have an symmetrical component 

vectors. 

Consider a 5-phase symmetric sub network between buses p and q as shown in fig. The network equation in the 

impedance form for this sub network is  
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Fig-1:Five phase power system network   

Where  

abcde

pqV and  

abcde

pqi are the column vectors of voltage drops and current through the 5-phase 

element p-q for the phases a, b, c, d, and e and z
abcde

pq   is the impedance matrix ( 5 X 5 coefficient matrix ) of the 

element p-q and 

abcde

pE   and  

abcde

qE are the column vectors of bus voltages at the buses p and q 

respectively. 
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The symmetry operations for the 5-phase element p-q Constitute a group (cyclic) of order 5.They are represented 

by the following matrices D(R) which are proper orthogonal matrices  
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The coefficient matrix Z
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commutes with D( R) hence  
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From the equality of matrices in equation (2) we get   
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The unitary matrix which diagonalizes the matrices (2) is nothing but the matrix formed Eigen vectors of D( R) 

as its columns and is given by  
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The same unitary matrix α will also diagonalize the coefficient matrix Z
abcde

pq  and α is called the symmetrical 

component transformation matrix Ts. 

Using representation theory, the 5-phase symmetric network displaying only rotational symmetries form a cyclic 

group denoted by C5. Since this group is cyclic Abelian group, it has 5 conjugate classes hence 5 one 

dimensional Irreducible representations. The permutation matrices in (2) form a reducible representation of C5 

and can be reduced to irreducible components using the formula (Hamermesh 1962). 
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We can see  each of the irreducible representations of C5 appears once. This  
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The Matrix α of the similarity transformation can be constructed using  orthogonality theorem of representations 

it comes out to be  
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This is the same symmetrical component transformation matrix Ts derived in (3) using Eigen values approach 

therefore  
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pqpq ZZZZZZwhere ++++=    is the zero sequence impedance and 

4321 ,,, pqpqpqpq ZZZZ are the first, second, third and fourth sequence impedances   

Network having both rotational and reflection symmetries  

The symmetry operations for the 5-phase network possessing rotations as well as reflection symmetries 

form a group C5v whose elements are E, 5c , 
2

5c , 
3

5c , 
4

5c , 
1v

σ ,
2v

σ , 
3v

σ , 
54

, vv σσ .     

The network equation remains invariant for permutations of port variables hence  
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The symmetry operations can be represented by the following permutation matrices. 
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Substituting for D(R) and comparing  both sides of the coefficient matrix z
abcde

pq  of a 5-phase element p-q 

displaying  both rotational as well as  reflection symmetries will be of the form  
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According to representation theory, the group C5v is having four conjugate classes hence from irreducible 

representations the matrices in (7) form a reducible representation of C5v and can be decomposed into irreducible 

representations D
1
, D

3
, and D

4
.  

That is  
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And the matrix α which diagonalizes the matrix D( R) is called the Clarke’s components transformation matrix 

Tc.  

 

CLARKE’S COMPONENT “ TC” 

We have that a unitary matrix which turnsout to be a clarke’s components by using real basis for 

representation and which turns out to be symmetrical components by using a complex basis of representation, 

diagonalizes the coefficient matrix z
abcde

pq  of a 5- phase stationary elements. The clarke’s components 

transformation Tc as derived in the following equation (9), 
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The Clarke’s components transformation matrix Tc diagonalizes the coefficient matrix z
abcde

pq  of a 5-phase 

stationary elements such as that of transposed transmission line. We have 
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where 
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pq zz 4+  is known as zero sequence component and 
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pq zz − is known as α-component That is 

same as β, δγ , component.  

 

SYMMETRICAL COMPONENTS”TS” 

 We have developed earlier the unitary matrix α for 5-phase rotating element solely based upon 

symmetry considerations The unitary matrix α as derived in equation (9) is as shown below, 
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The matrix Ts is unitary i.e.,* 
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ωωωω
ωωωω
ωωωω
ωωωω

T

ss TT       ----------- (12) 

As discussed the symmetrical components transformation matrix diagonalizes the coefficient matrix z
abcde

pq  of a 

5-phase rotating elements.  

i.e.,     [ ] Sabcde

pq

T

S TZT *
        ------------ (13) 

=























432

342

243

234

1

1

1

1

11111

5

1

ωωωω
ωωωω
ωωωω
ωωωω

 























S

pq

M

pq

M

pq

M

pq

M

pq

M

pq

S

pq

M

pq

M

pq

M

pq

M

pq

M

pq

S

pq

M

pq

M

pq

M

pq

M

pq

M

pq

S

pq

M

pq

M

pq

M

pq

M

pq

M

pq

S

pq

ZZZZZ

ZZZZZ

ZZZZZ

ZZZZZ

ZZZZZ

2321

1232

2123

3212

2321























ωωωω
ωωωω
ωωωω

ωωωω

234

243

342

432

1

1

1

1

11111

5

1
 

In equation (13), Ts and  
T

ST
*

 are substituted from equation(11) and (12)and z
abcde

pq  which is the coefficient 

matrix for 5-phase rotating elements is substituted from equation (7). Here in the equation (13) 

2321 M

pq

M

pq

M

pq

M

pq

S

pq ZZZZZ ++++  is known as a zero sequence impedence and is denoted by 
0

pqZ .Similarly 

2321 432 M

pq

M

pq

M

pq

M

pq

S

pq ZZZZZ ωωωω ++++  is known as a positive sequence impedence and is denoted by 

1

pqZ .and 2321 342 M

pq

M

pq

M

pq

M

pq

S

pq ZZZZZ ωωωω ++++ . is known as a second order sequence impedence and 

is denoted by 
2

pqZ . and 2321 243 M

pq

M

pq

M

pq

M

pq

S

pq ZZZZZ ωωωω ++++ . is known as a third order sequence 
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impedence and is denoted by 
3

pqZ . and 2321 234 M

pq

M

pq

M

pq

M

pq

S

pq ZZZZZ ωωωω ++++ . is known as a fourth 

order or negative sequence impedence and is denoted by 
4

pqZ . 

Thus we conclude from equations (13) that the symmetrical component transformation matrix diagonalizes the 

coefficient matrix z
abcde

pq  of the 5-phase rotating elements however, in this case 
0

pqZ  ≠   
1

pqZ   ≠   
2

pqZ ≠  
3

pqZ  

≠  
4

pqZ   i.e., sequence impedances are not equal. 
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