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Abstract

Existence of common fixed points of weak™** commuting mappings which satisfies the contractive condition
involving pair of mappings in a complete metric space under certain is shown.
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1. Introduction

A study of the common fixed points and weak  commuting mappings is fascinating field of research
lying at the intersection of non-linear analysis. A wide spread interest in the domain and vast amount of
mathematical activity have led to many remarkable new results.

In 1976, Jungck [4] investigated and found interdependence between commuting mappings and
common fixed points and proved the followings:

Let T be a continuous mapping of a complete metric space (X, d) into itself. Then T has a fixed point in
X, if and only if there exists an o € (0, 1) and a mapping S : X — X which commutes with T and satisfies:

(N S(X) < T(X) and d(Sx, Sy) < d(Tx, Ty)
For all x, y in X. Indeed, S and T have a unique common fixed point if and only if (1) holds for some a € (0,
1).

Further, in 1977, Singh [10] generalized the above result and proved that two continuous and
commuting mappings from a complete metric space into itself satisfies some conditions, then two commuting
mappings have a unique common fixed point.

Das and Vishwanathana Naik [1] have proved a theorem for two commuting mappings. Fisher [2]
proved a common fixed point of commuting mappings, Rhoades and Seesa [8] established some fixed point
theorems for three pair wise weakly commuting self maps satisfying a very general contractive definitions. Khan
and Imdad [5], considering a pair of self maps {A, T} of metric space (X, d) satisfying a weaker condition the
commutativity: namely weak commuting pair of mappings, that is

d(ATx, TAx) < d(A’x, T?X)

For each x in X.

B. Fisher [2] has been proved following theorem for two commuting mappings T and S.

If S is a mapping and T is a continuous mapping of the complete metric space into itself and satisfying
the inequality :

2) d(STx, TSy) <k {d(Tx, TSy) + d(Sy, STx)}
for all x, y in X, where 0 <k < 1/2, then S and T have a unique common fixed point.

In 1986, Pathak [7] has been further generalized a result of Khan and Imdad [5] by considering a pair of
self maps {A, T} of a metric space (X, d) satisfying a weaker condition, then commutativity: namely, weak
commuting pair of mappings, that is

d(ATx, TAX) <d(A%, T’x)
for each x € X.
In 1995, Lohani and Badshah [6] further generalized the result of B. Fisher[2, 3]

The purpose of this note is to prove some results concerning fixed points of weak commuting
mappings defined on complete metric spaces and satisfying some new functional inequality.

Definition 1.1. According to Seesa [9] two self maps S and T defined on metric space (X, d) are said to be
weakly commuting maps iff
d(STx, TSx) < d(Sx, Tx)
for all x in X.

Defintion 1. 2. Two self mappings S and T of metric space (X, d) is called weak  commuted, if S(X)
c T(X) and for any x € X,
d(ZSZsz, T°8’%%) < d(S°Tx, TS’x) < d(STk, T?Sx) < d(STx, TSx) < d(S,
T7x)

Definition 1.3. A map S : X — X, X being a metric space, is called an idempotent, if S* = S.

We further generalize the result of Fisher [2, 3], Pathak [7] and Lohani & Badshah [6] by using another
type of rational expression.

Theorem 1.1. If S is a mapping and T is a continuous mapping of complete metric space {S, T} is
weak "~ commuting pair and the following condition :
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d(T?x, S*T*x)d(T*x,T*S*y) +d(S*y,T>S y)d(S*y,S’T*x)
d(T*x,T*S*y)+d(S°y,S*T*x)

d(S°T*x,T*S’y) <«

+pd(T*x,S°y)
for all x, y in X, where 0 <o + 3 < 1, then S and T have a unique common fixed point.
Proof. Let x be an arbitrary point in X. Define
(S’T?)"x = X5, or TX(S*T?)X = Xon1y
Where n=0, 1, 2, 3...., by contractive condition (A),
d(x,,,x,,.,)=d(S’T*(S*T*)x,T*S*(T*(S°T*)" " x))

d(r7(S7T7) " x, 87T (ST x (1> (S°T>) " x, T2 8> (T (S°T>)" ™ )+

(27 (S°72) " x, 728> (T2 (S°T>) " x (ST (S°T2) " x, 87T (S°T*) " x)

d(T>(S?T*) " x, T2S*(T*(S*T?)" " x) )+ d(S*T*(S*T*)" ' x,§*T*(S*T?)" " x)
+,6’d( T*(S*T*)" x, 87T (S7T?)" ' x)

. d(T2(SzT2)n71x’SZT2(SZT2)nflx)d(TZ(SZTZ )nfl x’T2S2(T2(S2T2)n71x)
- d(T(ST)x, TS(T(ST)x)
+ﬁd(T2(SZT2)n—1 x,S2T2(SZT2)n_1)C)

d(x,,,%,,.)<ad(T*(S*T*)""'x,S°T*(S’T*)" "' x)+ Bd(T*(S°T*)" ' x,S°T*(S°T*)" " x)

IN

(0{ + ﬂ)d(XZH_l,(Ssz)nx)
(0{ +ﬂ)d(x2n—l’x2n)'

IN

Proceeding in the same manner
d(Xans Xane1) < (a0 + B d(x1, x,).

Also d(Xy,, Xp) < Z d(x, le) for m > n.
Since k < 1, it follows that the sequence {x,} is Cauchy sequence in the complete metric space X and so it

has a limit in X, that is
limyyoXon = U = im0 Xan+
and since T is continuous, we have
u = lim,_,Xon+1 = limn_mTz(XZH) =T
Further,
d(xoni1, S*u) = d(TAS*TH™ 'x, S*u)
= d(TX(S*TH™'x, S*(T?u)) for u=T?u
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<y d((S*T*)"" x, T*(S*T*)"" x)d(S*T*)"" x,(S*T*u)) + d(T*u,S*T*u)d(T*u,T*(S*T*)"" x))
Bl d((S°T*)"" x,8*T°u) +d(T*u, T*(S*T*)"" x)

+ Bd(S*T*)" x, T u)

[d(Xy,,25%2,:3)d (X525 Sz”) +d(u, Sz”)d(”a X5,13)]

= N d . "
d(x2n+2aS2M)+d(u,x2n+3) ﬂ ( 2n+2 )

taking limit as n — oo, it follows that

d(u, Su)=0.
which implies

d(u, S’u) = 0 and so u = S*u = T u.

Now consider weak commutativity of pair {S, T} implies that S’T?u = T?S%u, $°Tu = TS%u, ST?u =
T?Su and so STu = Tu and T*Su = Su. Now

d(u, Su) = d(S*T*u, T*S*(Su))

- a[d(Tzu,Sszu)d(Tzu,TzSz(S w)+d(S*(S u),T*S*(S u))d(S*(Su),S*T’u)]
B d(T*u,T*S*(Su)) + d(S*(Su),S T u)

+ Bd(T*u,S*(Su))
0y d(u,S*u)d(u,S*T*(Su)) + d(Su, Su)d (Su,u)
d(u,S* (Su))+d(Su,u)
_ d(u,u)d(u,Su)+ d(Su, Su)d(Su,u)
d(u,Su)+d(Su,u)

+ fd (u, Su)

+ fd(u, Su)

=0

= (1- B)d(u,Su) <0
=dWu,Su)<0

Hence Su = u, similarly we can show that Tu = u. Hence u is a common fixed point of S and T.
Now suppose that x is an another common fixed point of S and T. Then

d(u,v)=d(S*T*u,T*S*v)

<q d(T*u,S*T*u)d(T*u,T*S*v)+d(S*v,T*S*v)d(S°v,S*T*u)
d(T*u,T*S*v)+d(S°v,S°T u)
<o du,v)du,v)+du,v)d(u,v)
du,v)+d(v,u)
(1= B)d(u,v) <0
du,v)<0

+ Bd(T?u,S*v)

+ fd(u,v)

Then it follows that # = v. Hence S and T have a unique common fixed point.
Theorem 1.2. If S is mapping and T is a continuous mapping of a complete metric space X into itself
and satisfying {S, T} is weak  commuting pair and the following condition :

[d(T°x,S°T°x)] +[d(S*y,T*S?y)]
d(T’x,S°T*x)+d(S*y,T*S*y)

for all x, y in X, where o, B > 0 with 2ot + § <1, then S and T have a unique common fixed point.

d(S*T*x,T’S*y) < a +pd(T*x,8%y)  (B)
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Proof. Let x be an arbitrary point in X. Define
(ST?)"X = Xa, 0r TH(S*T?)X = Xon11
Where n =0, 1, 2, 3...., by contractive condition (B),
d(x,,,%,,,) =d((S’T*)"x,T*(S’T*)" x))
— d(Ssz (S2T2)nfl x,.T2S2 (T2 (S2T2)nfl x)
[d{(Tz (Ssz)rkl x’ S2T2 (S2T2)n71}]2 + [d{(Ssz(Ssz)rkl x, T2S2 (TZ(S2T2 )nfl )}]2 ,
d(T2 (SZTZ)}'!—I x, S2T2 (SZTZ)}'!—I x) + d(SZTZ(SZTZ )n—l x’ T2S2(T2 (SZTZ)}'!—I x))
+ ﬂd(Tz(Ssz)’Hx, S2T2(S2T2)n—1x)
<a [d(x,, ,%,, )]2 +d[(x,,,%,,., )]2 L Bd(x, %))
d(x,,,%,,) +d(xy,,X,,,)
<ald(x,,,x,,)+d(xy,,X,,,)]+ Bd(x,,,X,,)
<(a+p)d(x,,,,x,,)+od(x,,,x,,,)
(1 - Ot)d(x2n X)) S (a+ B)d(x,, 4, x,,)

o+
d(Xy,,%,,,,) < 1_—5d(‘x2n—l 3 X,)

<kd(x,,,X,,)

a+pf

l-a

where k =

Proceeding in the same manner, we have
2n-1

d()an, x2n+1) <k d(xl,XZ)-

Also

d(x,, x,,) < Z d(x,,x,,) form>n.
Since k < 1, it follows that the sequence {x,} is Cauchy sequence in the complete metric space X and so it has a
limit in X, that is

limnaooXZn =u= limn»ooxzm—l
and since T is continuous, we have

U= limy Xons1 = limy_, T(X2s)m = T u.
Further

d(Xon13, S™u) = d(TA(S*TH™'x, S*u)

= d(T*(S*T*™'x, SX(T?u)) (since u = T?u)

<y [d(Tzu,Sszu)]z + d[(S2T2)n+l x’T2 (S2T2)n+l x]2
B d(T*u,S*T*u)+d{(S*T*)""' x,T*(S*T*)""' x}
< ald(T*u,S*(T*u))+ d(X3,15%5,,3)]+ Pd(Xy,,5, T*u)
< a(d(u,S*u) + d(Xy,.95%2,,3)) + Pd(x,,,,,u)

Taking limit as n — oo, it follows that
d(u, S'u) <0,

which implies that d(u, S*u) = 0 and so that u = S*u = T"u.

Now consider weak" commutativity of pair {S, T}, implies that S*T*u = T*S*u , S*Tu, TS?u, ST>u = TSu and

s0 S$*Tu = Tu and T*Su= Su.

Now d( u, Su) = d(S*T?u, T>S*(Su))

<y [d(T?u,S°T*u)] +d[S*(Su),T>S*(Su)]
 d(Tu, S T u) +d(S* (Su), T*S*(Su))

+ fd(T?u,(S°T*)" x)

+ Bd(T*u,S*(Su))
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_ L))+ [d(Su, Su)]
 du,u)+d(Su,Su)
(1- B) d(u, Su)y < 0

this implies that (1-f) # 0. Hence d(u, Su) =0 or Su=u.
Similarly we can show that Tu = u. Hence u is a common fixed point of S and T. Now suppose that v is another

common fixed point of S and T, then
d(u, v) = d(S*T?u, T*S?V)

<:a[d(TQu,S27Qu)f-+[d(S2v,TzSsz2
B d(T*u,S*T*u)+d(S*v,T*S*v)
< ald(u,u)]+d[(v,v)]+ pd(u,v)

(1- p) d(u, v) <0.
Since (1-f) # 0, then d(u, v) = 0. Thus it follows that # = v. Hence S and T have a unique common fixed point.

+ fd (u, Su)

+ fd(T*u,S*v)

Example 1.1. Let X = [0,1] with Euclidean metric space and define S and T by Sx = i 5 ,Ix = g
for all x € X, then [0, 1/5] < [0,1/4], where Sx = [0, 1/5] and Tx = [0, 1/4] *
d(S°T*x,T*8*x)=—~
3x+16 8x+16
B 5x°
~ (3x+16)—(8x+16)
2x
(2x+8)(4x+18)

X b
2x+8 4x+8

=d (8°Tx, TS’x)
= d(S°T’x, T°S’x) < d(S°Tx, TS’x)

x X
2x+8 4x+8
_ 2x?

(2x+8)(4x+38)

3x?
S e

(x+8)(4x+78)
X X

d(S°Tx, TS*x) =

C x+8 4x+8
=d(ST’x, T"Sx)
= d(S°Tx, TS’x) <d(ST’ x, T" Sx)
X X

d(ST’ x, T Sx) =

x+8 4x+8
o x
(x+8&)((x+38)

2
X

= (x+4)(2x+4)
X X

Cx+4 2x+4
=d(STx, TSx)
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= d(ST’ x, T’ Sx) < d(STx, TSx)
X

x+4 2x+4

2
X

T (x+4)2x+4)
3x?
S e —
4(3x +4)
_Xx__ X
4 3x+4
=d(T’x, §°x)
= d(STx, TSx) < d(T’x, §’x)

using [0, 1] for x €X, we conclude that definition (1.2) as follows :
d(S’T’x, T°S’x) < d(S°Tx, TS’x) < d(ST" x, T Sx) < d(STx, TSx) < d(T’x, §°x) for any xe X.

d(STx, TSx) =
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