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Abstract  

Existence of common fixed points of weak** commuting mappings which satisfies the contractive condition 

involving pair of mappings in a complete metric space under certain is shown. 
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1. Introduction    
A study of the common fixed points and weak

**
 commuting mappings is fascinating field of research 

lying at the intersection of non-linear analysis. A wide spread interest in the domain and vast amount of 

mathematical activity have led to many remarkable new results. 

 In 1976, Jungck [4] investigated and found interdependence between commuting mappings and 

common fixed points and proved the followings: 

 Let T be a continuous mapping of a complete metric space (X, d) into itself. Then T has a fixed point in 

X, if and only if there exists an α ∈ (0, 1) and a mapping S : X → X which commutes with T and satisfies:  

(1) S(X) ⊂ T(X) and d(Sx, Sy) ≤ d(Tx, Ty) 

For all x, y in X. Indeed, S and T have a unique common fixed point if and only if (1) holds for some α ∈ (0, 

1). 

 Further, in 1977, Singh [10] generalized the above result and proved that two continuous and 

commuting mappings from a complete metric space into itself satisfies some conditions, then two commuting 

mappings have a unique common fixed point. 

 Das and Vishwanathana Naik [1] have proved a theorem for two commuting mappings. Fisher [2] 

proved a common fixed point of commuting mappings, Rhoades and Seesa [8] established some fixed point 

theorems for three pair wise weakly commuting self maps satisfying a very general contractive definitions. Khan 

and Imdad [5], considering a pair of self maps {A, T} of metric space (X, d) satisfying a weaker condition the 

commutativity: namely weak
*
 commuting pair of mappings, that is  

 d(ATx, TAx) ≤ d(A
2
x, T

2
x) 

For each x in X. 

B. Fisher [2] has been proved following theorem for two commuting mappings T and S. 

If S is a mapping and T is a continuous mapping of the complete metric space into itself and satisfying 

the inequality :  

(2) d(STx, TSy) ≤ k {d(Tx, TSy) + d(Sy, STx)} 

for all x, y in X, where 0 ≤ k ≤ 1/2, then S and T have a unique common fixed point. 

 In 1986, Pathak [7] has been further generalized a result of Khan and Imdad [5] by considering a pair of 

self maps {A, T} of a metric space (X, d) satisfying a weaker condition, then commutativity: namely, weak
* 

commuting pair of mappings, that is  

   d(ATx, TAx)  ≤ d(A
2
x, T

2
x) 

for each x ∈ X. 

In 1995, Lohani and Badshah [6] further generalized the result of B. Fisher[2, 3] 

 The purpose of this note is to prove some results concerning fixed points of weak
**

 commuting 

mappings defined on complete metric spaces and satisfying some new functional inequality. 

Definition 1.1.   According to Seesa [9] two self maps S and T defined on metric space (X, d) are said to be 

weakly commuting maps iff 

  d(STx, TSx) ≤ d(Sx, Tx) 

for all x in X. 

 Defintion 1. 2.  Two self mappings S and T of metric space (X, d) is called weak
**

 commuted, if S(X) 

⊂ T(X) and for any x ∈ X, 

d(S
2
T

2
x, T

2
S

2
x) ≤ d(S

2
Tx, TS

2
x) ≤ d(ST

2
x, T

2
Sx) ≤ d(STx, TSx) ≤ d(S

2
x,                                                                                                     

T
2
x) 

Definition 1.3.  A map S : X → X, X being a metric space, is called an idempotent, if S
2
 = S. 

 We further generalize the result of Fisher [2, 3], Pathak [7] and Lohani & Badshah [6] by using another 

type of rational expression. 

 Theorem 1.1.  If S is a mapping and T is a continuous mapping of complete metric space {S, T} is 

weak
**

 commuting pair and the following condition : 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.9, 2013-Special issue, International Conference on Recent Trends in Applied Sciences with Engineering Applications 

 

44 

),(

),(),(

),(),(),(),d(T
),(

22

222222

22222222222
2222

2

ySxTd

xTSySdySTxTd

xTSySdySTySdySTxTdxTSx
ySTxTSd

β

α

+

+

+
≤

  

for all x, y in X, where 0 ≤ α + β < 1, then S and T have a unique common fixed point. 

Proof.   Let x be an arbitrary point in X. Define 

 (S
2
T

2
)

n
x = x2n or T

2
(S

2
T

2
)

n
x = x2n+1 

Where n =0, 1, 2, 3…., by contractive condition (A), 

( ) ( )
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Proceeding in the same manner 

d(x2n, x2n+1) < (α + β)
2n-1

d(x1, x2). 

Also d(xn, xm) ≤ )( 1, +

=

∑ i

m

ni

i xxd   for m > n. 

Since k < 1, it follows that the sequence {xn} is Cauchy sequence in the complete metric space X and so it 

has a limit in X, that is  

  limn→∞x2n = u = limn→∞x2n+1 

and since T is continuous, we have 

  u = limn→∞x2n+1 = limn→∞T
2
(x2n) = T

2
u. 

Further, 

  d(x2n+1, S
2
u) = d(T

2
(S

2
T

2
)

n+1
x, S

2
u) 

    = d(T
2
(S

2
T

2
)

n+1
x, S

2
(T

2
u)) for u = T

2
u 
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taking limit as n → ∞, it follows that  

 d(u, S
2
u) = 0. 

which implies 

 d(u, S
2
u) = 0 and so u = S

2
u = T

2
u. 

Now consider weak
**

 commutativity of pair {S, T} implies that S
2
T

2
u = T

2
S

2
u, S

2
Tu = TS

2
u, ST

2
u = 

T
2
Su and so S

2
Tu = Tu and T

2
Su = Su. Now 

 d(u, Su) = d(S
2
T

2
u, T

2
S

2
(Su)) 

( )
0),(
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Hence Su = u, similarly we can show that Tu = u. Hence u is a common fixed point of S and T. 

 Now suppose that x is an another common fixed point of S and T. Then 

           
),(),( 2222 vSTuTSdvud =

 

       ),(
),(),(

),(),(),(),( 22

222222

222222222222
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βα +

+
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                       ( )
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≤

≤−

+
+
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vud

vud
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uvdvud

vudvudvudvud

β
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Then it follows that u = v. Hence S and T have a unique common fixed point. 

Theorem 1.2.   If S is mapping and T is a continuous mapping of a complete metric space X into itself 

and satisfying {S, T} is weak
**

 commuting pair and the following condition : 

),(
),(),(

)],([)],([
),( 22

222222

222222
2222 ySxTd

ySTySdxTSxTd

ySTySdxTSxTd
ySTxTSd βα +

+

+
≤      (B) 

for all x, y in X, where α , β ≥ 0 with 2α + β < 1, then S and T have a unique common fixed point. 
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Proof.   Let x be an arbitrary point in X. Define 
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Proceeding in the same manner, we have 

d(x2n, x2n+1) ≤ k
2n-1

d(x1,x2). 

Also 

d(xn, xm) ≤ ∑
=

+

m

ni

ii xxd ),( 1   for m > n. 

Since k < 1, it follows that the sequence {xn} is Cauchy sequence in the complete metric space X and so it has a 

limit in X, that is  

 limn→∞x2n = u = limn→∞x2n+1 
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2
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2
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Further 
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Taking limit as n → ∞, it follows that 

  d(u, S
2
u) ≤ 0, 

which implies that d(u, S
2
u) = 0 and so that u = S

2
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2
u. 

Now consider weak
**

 commutativity of pair {S, T}, implies that S
2
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2
u = T

2
S

2
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2
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2
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2
u  = T

2
Su  and 

so S
2
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2
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                  (1- β) d(u, Su) ≤ 0     

this implies that (1-β) ≠ 0. Hence d(u, Su) = 0 or Su = u. 

Similarly we can show that Tu = u. Hence u is a common fixed point of S and T. Now suppose that v is another 

common fixed point of S and T, then 

 d(u, v) = d(S
2
T

2
u, T

2
S

2
v) 

                     ),(
),(),(

)],([)],([ 22

222222

22222222

vSuTd
vSTvSduTSuTd

vSTvSduTSuTd
βα +

+
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≤  

                     ≤ ),()],[()],([ vudvvduud βα ++  

(1- β) d(u, v) ≤0. 

Since (1-β) ≠ 0, then d(u, v) = 0. Thus it follows that u = v. Hence S and T have a unique common fixed point. 

Example 1.1. Let X = [0,1] with Euclidean metric space and define S and T by 
2

,
2

x
Tx

x

x
Sx =

+
=  

for all x ∈ X, then [0, 1/5] ⊂ [0,1/4], where Sx = [0, 1/5] and Tx = [0, 1/4] 
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−
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=
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=

xx

x
 

                    ≤ 
)84)(82(

2

++ xx

x
 

                   = 
8482 +

−
+ x

x

x

x
 

                  = d (S
2
Tx,TS

2
x) 
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−
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⇒ d(ST
2
 x, T

2
 Sx) ≤ d(STx, TSx) 

d(STx, TSx) = 
424 +

−
+ x

x

x
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2
x) 

⇒  d(STx, TSx) ≤ d(T
2
x, S

2
x) 

using [0, 1] for x ∈X, we conclude that definition (1.2) as follows : 

 d(S
2
T

2
x, T

2
S

2
x) ≤ d(S

2
Tx, TS

2
x) ≤ d(ST

2
 x, T

2
 Sx) ≤ d(STx, TSx) ≤ d(T

2
x, S

2
x) for any x∈ X. 
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