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Abstract 

In this article, the maximum likelihood and Bayes estimates of the generalized extreme value distribution based 

on record values are investigated. The asymptotic confidence intervals as well as bootstrap confidence are 

proposed. The Bayes estimators cannot be obtained in closed form so the MCMC method are used to calculate 

Bayes estimates as well as the credible intervals. A numerical example is provided to illustrate the proposed 

estimation methods developed here.  

Keywords: Generalized extreme value distribution, Record values, Maximum likelihood estimation, Bayesian 

estimation. 
 
1. Introduction 

Record values arise naturally in many real life applications involving data relating to sport, weather and life testing 

studies. Many authors have been studied record values and associated statistics, for example, Ahsanullah ( [1], [2], 

[3]), Arnold and Balakrishnan [4], Arnold, et al. ( [5], [6]), Balakrishnan and Chan ( [7], [8]) and David [9]. Also, 

these studies attracted a lot of attention see papers Chandler [10], Galambos [11]. 

In general, the joint probability density function (pdf) of the first m  lower record values    

)()2()1( ,...,, mLLL XXX is given by 
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The extreme value theory is blend of an enormous variety of applications involving natural phenomena such as 

rainfall, foods, wind gusts, air population and corrosion, and delicate mathematical results on point processes and 

regularly varying functions. Frechet [12] and Fisher [13] publishing result of an independent inquiry into the 

same problem. The Extreme lower bound distribution is a kind of general extreme value (the Gumbel-type I, 

extreme lower bound [Frechet]-typeII and Weibull distribution type III extreme value distributions). The 

applications of the extreme lower bound [Frechet]-type II turns out to be the most important model for extreme 

events the domain of attraction condition for the Frechet takes on a particularly easy from. In probability theory 

and statistics, the generalized extreme value (GEV) distribution is a family of continuous probability 

distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also 

known as type I, II and III extreme value distributions. By the extreme value theorem the GEV distribution is the 

limit distribution of properly normalized maxima of a sequence of independent and identically distributed 

random variables. So, the GEV distribution is used as an approximation to model the maxima of long (finite) 

sequences of random variables. In some fields of application the generalized extreme value distribution is known 

as the Fisher--Tippett distribution, named after R. A. Fisher and L. H. C. Tippett who recognized three function 

forms outlined below. However usage of this name is sometimes restricted to mean the special case of the 

Gumbel distribution. The (pdf) and (cdf) of x  are given respectively:  
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for  0/)(1   x  , where   is the location parameter,   is the scale parameter and   is the shape 

parameter. 

1.1 Markov chain Monte Carlo techniques 

MCMC methodology provides a useful tool for realistic statistical modelling (Gilks et al.[14]; Gamerman,[15]), 

and has become very popular for Bayesian computation in complex statistical models. Bayesian analysis requires 

integration over possibly high-dimensional probability distributions to make inferences about model parameters 

or to make predictions. MCMC is essentially Monte Carlo integration using Markov chains. The integration 

draws samples from the required distribution, and then forms sample averages to approximate expectations (see 

Geman and Geman, [16]; Metropolis et al., [17]; Hastings, [18]). 

1.2 Gibbs sampler 

The Gibbs sampling algorithm is one of the simplest Markov chain Monte Carlo algorithms. The paper by 

Gelfand and Smith [19] helped to demonstrate the value of the Gibbs algorithm for a range of problems in 

Bayesian analysis. Gibbs sampling is a MCMC scheme where the transition kernel is formed by the full 

conditional distributions. 

Algorithm 1.1. 

1 - Choose an arbitrary starting point  
      00

1

0 ,..., dqqq    for which     .00 g  

2 - Obtain  
 tq1

 from conditional distribution 
      11

3

1

21 ,...,,|  t

d

tt qqqqg . 

3- Obtain  
 tq2   from conditional distribution  

      1

1

1

312 ,...,,|  ttt qqqqg .  

. . . . 

4 - Obtain  
 t
dq   from conditional distribution  

        .,...,,,| 1321

t

d

ttt

d qqqqqg 
. 

5 - Repeat steps 2 - 4. 

1.3 The Metropolis-Hastings algorithm 

The Metropolis algorithm was originally introduced by Metropolis et. al [17]. Suppose that our goal is to draw 

samples from some distributions     qgxqh |  , where     is the normalizing constant which may not be 

known or very difficult to compute. The Metropolis-Hastings (MH) algorithm provides a way of sampling from 

 xqh |  without requiring us to know  . Let     ab qqQ | be an arbitrary transition kernel: that is the 

probability of moving, or jumping, from current state
 aq to

 bq . This is sometimes called the proposal 

distribution. The following algorithm will generate a sequence of the values  
   21 ,qq , ... which form a Markov 

chain with stationary distribution given by  xqh | . 

Algorithm 1.2. 

1- Choose an arbitrary starting point 
 0q  for which    0|0 xqh  . 

2- At time t , sample a candidate point or proposal, 
q , from   1|  tqqQ , the proposal distribution. 

3- Calculate the acceptance probability 
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4- Generate   .1,0UU    

5- If     qqU t ,1   accept the proposal and set  
   qq t

 . Otherwise, reject the proposal and set  

   1 tt qq   

6- Repeat steps 2 - 5. 

If the proposal distribution is symmetric, so    qQqQ ||    for all possible and q then, in particular, we have 
     11 ||   tt qqqqqQ , so that the acceptance probability (5) is given by: 
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In this paper is organized in the following order: In Section 2 the point estimation of the parameters of 

generalized extreme value distribution based on record value and bootstrap confidence intervals based are 

investigated. In Section 3, we cover Bayes estimates of parameters and construction of credible intervals using 

MCMC approach. An illustrative example involving simulated records is given in Section 4. 

 

2. Maximum Likelihood Estimation 

Let ,)1(LX ,)2(LX … , )(mLX be m lower record values each of which has the generalized extreme value whose 

the pdf and cdf are, respectively, given by (2) and (3). Based on those lower record values and for simplicity of 

notation, we will use ix  instead of )(iLX . The logarithm of the likelihood function may then be written as: 
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where  /)()(  ii XT  with known .   Calculating the first partial derivatives of Eq. (6) with respect to   

and   and equating each to zero, we get the likelihood equations as: 
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By solving the two nonlinear equations (7) and (8) numerically, we obtain the estimates for the parameters and 

,  say ̂  and ̂ . 

Records are rare in practice and sample sizes are often very small, therefore, intervals based on the asymptotic 

normality of MLEs do not perform well. So two confidence intervals based on the parametric bootstrap and 

MCMC methods are proposed. 

2.1  Approximate Interval Estimation 

If sample sizes are not small. The Fisher information matrix   ,I  is then obtained by taking expectation of 

minus of the second derivatives of the logarithm likelihood function. Under some mild regularity conditions, 

( )ˆ,ˆ  is approximately bivariately normal with mean   ,  and covariance matrix   ,1I . In practice, 

we usually estimate   ,1I  by )ˆ,ˆ(1 I  . A simpler and equally veiled procedure is to use the 

approximation 

  ,)ˆ,ˆ(,,)ˆ,ˆ( 1

0   IN  (9) 

where   ,0I  is observed information matrix given by 
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(10) 

where the elements of the Fisher information matrix are given by  
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Approximate confidence intervals for  and can be found by to be bivariately normal distributed with mean 

  ,  and covariance matrix )ˆ,ˆ(1

0 I . Thus, the )%1(100    approximate confidence intervals for   

and  are: 

 )ˆ,ˆ( 1111
22

vzvz     and  )ˆ,ˆ( 2222
22

vzvz     (14) 

respectively, where 11v and 22v are the elements on the main diagonal of the covariance matrix )ˆ,ˆ(1

0 I and 

2

z  is the percentile of the standard normal distribution with right-tail probability 2


. 

2.2 Bootstrap confidence intervals 

In this section, we propose to use percentile bootstrap method based on the original idea of Efron [20]. The 

algorithm for estimating the confidence intervals of  and  using this method are illustrated below. 

1- From the original sample of lower records x , compute ML estimates ̂ and .̂   

2- Use ̂ and ̂ to generate bootstrap records sample }.,...,,{ )()2()1(



nLLL xxx  Use these data to 

compute the bootstrap estimate
̂  and .ˆ    

3- Repeat step 2 , N boot times. 

4- Bootstrap estimates  

)(ˆˆ

1

1
Boot

i
N

i

N





  and  

)(ˆˆ

1

1
Boot

i
N

i

N





  .  

5- Let  )ˆ()( xPxG    , be the cumulative distribution of  
̂  . Define  )(ˆ 1 xGBoot

   for a 

given x  . The approximate  )%21(100    confidence interval of     is given by 
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.))1(ˆ,)(ˆ( BootBoot    (15) 

Similarly, 

.))1(ˆ,)(ˆ( BootBoot    (16) 

 

3. Bayesian Estimation 

In this section, we are in a position to consider the Bayesian estimation of the parameters  and  for record 

data, under the assumption that the parameter  is known . We may consider the joint prior density as a product 

of independent gamma distribution )(1  
and )( 2  

, given by 

,0,  ),exp()( 1

1   baba   (17) 

and 
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By using the joint prior distribution of   and  and likelihood function, the joint posterior density function of 

  and  given the data, denoted by ),|,( x  can be written as 
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As expected in this case, the Bayes estimators can not be obtained in closed form. We propose to use the Gibbs 

sampling procedure to generate MCMC samples, we obtain the Bayes estimates and the corresponding credible 

intervals of the unknown parameters. A wide variety of MCMC schemes are available, and it can be difficult to 

choose among them. An important sub-class of MCMC methods are Gibbs sampling and more general 

Metropolis-within-Gibbs samplers. 

It is clear that the posterior density function of  given is 

,
)(

1log)
1

1(
)(

1exp)|(
)(

1

)(1

1

1






















 








 
 



















mL
m

i

mLma
xx

b  (20) 

and the posterior density function of  given  can be written as 
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The plots of them show that they are similar to normal distribution. So to generate random numbers from these 

distributions, we use the Metropolis-Hastings method with normal proposal distribution. Therefore the algorithm 

of Gibbs sampling procedure as the following algorithm: 

algorithm 3.1 

1. Set   ˆ)0(    and   ˆ)0(    and  M  burn-in. 

2. Set  .1t   

3. Generate
)(t from )|( )1(

1

t using MH algorithm with the ),( 1

)1(  tN  proposal distribution. 

4. Generate
)(t from )|( )(

2

t using MH algorithm with the ),( 2

)1(  tN proposal distribution. 
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5. Set  1 tt  . 

6. Repeat  2-5  and obtain ( 
)1()1( ,  ), ( 

)2()2( ,  ), ..., ( 
)()( , NN   ). 

7. An approximate Bayes estimate of any function ),( g  under a SE loss function can be obtained as 

).,(
1~ )()(

1

ii
N

Mi

g
MN

g 


  (22) 

8. To compute the credible intervals of     and   , order  NM  ,...,1  and  NM  ,...,1  as  

)()1( ,..., MN  and  .,...,
)()1( MN 

  Then the )%21(100   symmetric credible intervals   

),( )))(1(())(( MNMN    and ),( )))(1(())(( MNMN    .  

 

4. Data Analysis 

Now, we describe choosing the true values of parameters   and  with known prior. For given 

)2,4(  ba generate random sample of size 100, from gamma distribution, then the mean of the random 

sample j

i

 



100

1

100
1 , can be computed and considered as the actual population value of  1.9 .   That is, 

the prior parameters are selected to satisfy 
b
aXE )(  is approximately the mean of gamma distribution. 

Also for given values )2,3(  dc , generate according the last  ,4.1  from gamma distribution. The 

prior parameters are selected to satisfy 
d
cXE )( is approximately the mean of gamma distribution. By 

using ( ,9.1  and ),4.1  we generate lower record value data from generalized extreme lower 

bound distribution the simulate data set with  7m  , given by: 29.7646,  4.9186,  3.8447,  2.5929,  2.3330,  

2.2460,  2.2348 

 

Under this data we compute the approximate MLEs, bootstrap and Bayes estimates of  and   using MCMC 

method, the MCMC samples of size 10000 with 1000 as ' burn-in'. The results of point estimation are displayed 

in Table 1 and results of interval estimation given in Table 2. 

 

Table 1. The point estimates of parameters   and  with .5.3  

Method     

MLE 1.95996 1.64485 

Boot 2.01135 1.85243 

Bayes 1.68060 1.07709 

 

Table 2: Two-sided 95% confidence intervals and it is length of   and   

Method   Length   Length 

MLE (-0.81593, 8.04907) 8.8650 (-0.717938, 6.39967) 7.1176 

Boot (1.32546, 4.54325) 3.2178 (0.12548, 3.45781) 3.3323 

Bayes (1.19938, 2.26063) 1.0613 (0.582031, 1.58285) 1.0008 
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Figure 1. Simulation number of   generated by MCMC method 

 

 
Figure 2. Simulation number of   generated by MCMC method 
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