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Abstract 

In this paper, an EOQ (Economical Order Quitting) model with shortages (of employees) can be studied. 
The cost due to decrease in real wage and the cost involved in moving to a new job are considered, with a 
constraint that, the decrease in the real income over a period of time is limited. In real life, these costs are 
uncertain to a certain extent. This uncertainty has been discussed by utilizing the concept of fuzzy set 
theory. Fuzzy non-linear programming technique using Lagrange multipliers is used to solve the problems 
in this model. The application of this model in man power planning is illustrated by means of a numerical 
example. The variations of the results with those of the crisp model have been compared. Further the 
sensitivity analysis is also presented.      

Keywords: Inventory, Economical Order Quitting, Real Wage, Fuzzy Sets, Man Power Planning, 
Membership Function, Sensitivity Analysis. 

 

1. Introduction 

In the world, many researchers have worked on the EOQ model after the publication of classical lot-size 
formula by Haris in 1915. At present, one of the most promising reliable fields of research is recognized as 
fuzzy mathematical programming. Glenn.T.Wilson’s[4] square Root Rule for employment change has been 
applied to develop an EOQ model in Man Power Planning to obtain the optimal time of quitting the present 
job for an employee of an organization based on the condition that the salary increase in the new job is 
equal to the decrease in the real income at the time of quitting[9]. 

In Inventory models we deal with costs that are crisp, that is, fixed and exact. But in realistic situations 
these costs are varying over a certain extent of predetermined level. However these uncertainties are due to 
fuzziness and in these cases the fuzzy set theory introduced by Zadeh[1] is applicable. In this paper an 
attempt is made to obtain a fuzzy model for Wilson’s Paper[4] by adding an appropriate constraint. In 1995, 
T.K.Roy and M.Maiti[10] presented an EOQ model with constraint in a fuzzy environment. The model is 
solved by fuzzy non-linear programming (FNLP) method using Lagrange multipliers and illustrated with 
numerical examples. The solution is compared with solution of the corresponding crisp problem. Also 
sensitivity analysis is made on optimum increase in salary in the new job and on optimum quitting time of 
the present job for variations in the rate of decrease in real wages following Dutta.D, J.R.Rao and 
R.N.Tiwari[3]. 

As we know that the constant increase in the cost of living is always more than the increase in the salary of 
an employee, which in turn causes a decrease in his real income. In this situation, it is quite common that an 
employee thinks of quitting the present job and switching over to a new one. An EOQ model is analyzed 
using fuzzy set theory, which gives the optimal time for an employee to quit, at a minimum cost.   

2. Notations And Terminology 
 I   – Initial real income of an employee in the first year of our discussion (Holding cost) 

 S –  The cost of resetting in the new place (Setup cost) 

 D –  The cost of deficiting at the time of quitting (Shortage cost) 
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 R –  Rate of decline of real income per year, defined as a proportion of I 

 RI –  Amount of decrease in real income per year, expressed as a proportion of I 

 Q� – Quantity of salary rise in the new job in a year 

 Q�I – Quantity of salary rise, as a proportion of I, necessary to make it worthwhile to change jobs 

								Q� – Re-order quantity of employees (Re-order quantity of salary) 

    Q = Q� + Q� 
 T –  Time in years between changing jobs  

 B -  The upper limit for decrease in salary (real income) at the time of quitting  

Terminology:  

 Cost of Living Index =	∑�	
�∑��
� 	x	100  

where  P� , P� are the prices of goods in base (year of reference) and current years and Q� being the 
quantities of goods bought in the base year. 

 Real Wage = 
������	���������	��	 !"!�#	��$�% 	x	100 

We assume that the decrease in real income every year is uniform, so that after ‘T’ years it is reduced to 
RIT. If a person changes his job after T years, his salary increases in the new job, Q�I, must be atleast RIT. 

Therefore Q�I= RIT implies that T=Q�/R (See figure - I)  

3. Mathematical Analysis 

 A crisp non-linear programming problem may be defined as follows: 

Min g�(X, C�) 
Subject to: g!(X, C!)≤ b!   (3.1) X ≥ 0, i = 1,2, ……… .m 

where X=(X�, X�, …… . . X�)4  is a variable vector. g�, g!’s are algebraic expressions in X with coefficients 5� ≡ (C��, C��, …… . , C��)	and	C! = (C!�, C!�, …… . , C!�) respectively. 

 

Introducing fuzziness in the crisp parameters, the system (3.1) in a fuzzy environment is: 

Min g�(X, C�:) 

Subject to: g!(X, C;< )≤ =><    (3.2) X ≥ 0, i = 1,2, ……… .m 

where the wave bar (~) represents the fuzzification of the parameters. 

In fuzzy set theory, the fuzzy objective, coefficients and constraints are defined by their membership 
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functions which may be linear or non-linear. According to Bellman and  Zadeh[1], Carlson and 
Korhonen[2] and Trappey et.al[11] the above problem can be written as,   

Max  α 

Subject to: g!(X, μ�@A�(α))≤ μC@A�(α)   (3.3) X ≥ 0, i = 0,1,2, ……… .m 

where μ�@(X)  and μC@(X) are the membership functions of fuzzy objective and fuzzy constraints and  D  is 
an additional variable wshich is known as aspiration level. 

Therefore, the Lagrangian function is given by 

L(α, X, λ)= α-∑ λ!FGg!(X, μ�@A�(α))H − GμC@A�(α)HJ�!K�   (3.4) 

where  L! , (i=0,1,2,……..,m) are Lagrange multipliers. 

According to the Kuhn-Tucker[8] necessary conditions, the optimal values  

(X�∗,X�∗,……X�∗,λ�∗,λ�∗,……..λ�∗
,D∗) 

should satisfy N NOP = 0, N NQ = 0, (3.5) λ!Gg!(X, μ�@A�(α)) − μC@A�(α)H=0                                         g!(X, μ�@A�(α)) − μC@A�(α) ≤	0        and  λ! ≤ 0, i = 0,1,2, …… .m,   j=1,2,3…….n 

 

 

The Kuhn – Tucker sufficient conditions demand that the objective function (for maximization) and 
constraints should be respectively concave and convex.  

Solving  equation (3.5), the optimal solution for the fuzzy non-linear programming problem is obtained. 

4.EOQ Model where Fuzzy Goal, Costs are Represented by Linear Membership Functions 
 In a crisp EOQ Model, the problem is to choose the order level Q(>0) and Q=Q�+Q� which minimizes 
the average total cost C(Q) per unit time. That is 

MinC(Q)=
�� I R
	S
 T + ��DR
SS
 T + S RW
T																																		         (4.1) 

Subject to: Q�I ≤ B Q� > 0 
The fuzzy version of the square root rule for employment change model with one constraint is written as 
follows:  

Maximize  α 
Subject to: �� μ�A�(α) R
	S
 T + �� μ�A�(α) R
SS
 T + μZA�(α) RW
T ≤ μ�A�(α)     (4.2) Q�I ≤ μ[A�(α) Q� > 0	, D ∈ [0,1] 
where μ�(x), μ�(x), μZ(x), μ�(x)and	μ[(X)  are linear membership functions for real income, deficit in 
cost, setup cost, objective function and upper bound for decrease in real wage respectively.  
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 Assume that the linear membership functions are defined as follows:  

μ�(x) = _̀
a 0																																		bcd								x < I − I�			1 − fI − 	xI� g 											bcd			I − I� ≤ x ≤ I		1																																	bcd			x > I																					 

μ�(x) = _̀
a 0																																	bcd								x < D − D�1 − fD − xD� g 										bcd	D − D� ≤ x ≤ D1																																bcd	x > D																				 

μZ(x) = _̀
a 0																																		bcd								x < S − S�			1 − fS − 	xS� g 											bcd			S − S� ≤ x ≤ S		1																																	bcd			x > S																					 

μ�(x) = _̀
a0																																	bcd								x > C + C�1 − fx − CC� g 										bcd		C ≤ x ≤ C + C�1																																bcd		x < C																		 
μ[(x) = h0																															bcd								x > B + B�1 − R%A[[� T 										bcd	B ≤ x ≤ B + B�1																														bcd	x < B																			          ------- (4.3) 

Here I�, D�, S�, C�		and		B�,	are the maximal violations of the aspiration levels of I, D, S, C and B (or the 
permissible ranges). From the nature of parameters defined, it is observed that the setup cost, deficit cost 
and the real income are non-decreasing and the objective function and upper limit for decrease in real 
income are non-increasing. Hence we have μ�A�(α) = I − (1 − α)I�		; 			 														μ�A�(α) = D − (1 − α)D�		;			 μZA�(α) = S − (1 − α)S�		; 			 												μ�A�(α) = C + (1 − α)C�			        and     μ[A�(α) = B + (1 − α)B�																																																																																																																											------(4.4) 

The Lagrangian equation takes the form as  

L(α,Q�,Q� , L�, L�) = 	α – 	L� k�� (I − (1 − α)I�) R 
	S
	+
ST + �� (D − (1 − α)D�) R 
SS
	+
ST + (S − (1 −
α)S�) R W
	+
ST − (C + (1 − α)C�)l	−	L�[Q�I − (B + (1 − α)B�)]       --------- (4.5 ) 

By Kuhn-Tucker’s necessary conditions, we have 

N NQ = 0	 ⇒ 1−	L�I� 
	S�(
	+
S)−	L�D� 
SS�(
	+
S) 	−	L�S� R W
	+
ST−	L�C�−	L�B� = 0	             --------(4.6)                              

                                                              N N
	 = 0	 ⇒ 	L� k�� (I − (1 − α)I�) 
	(
	+�
S)(
	+
S)S − �� (D − (1 − α)D�) 
SS(
	+
S)S − (S − (1 − α)S�) R W(
	+
S)STl +L�I = 0                      -------- 
(4.7) 
                                                                                                                                                           N N
	 = 0	 ⇒	L� k�� (I − (1 − α)I�) 
	(
	+�
S)(
	+
S)S − �� (D − (1 − α)D�) 
SS(
	+
S)S − (S − (1 − α)S�) R W(
	+
S)STl + L�I = 0                                                            

-------- (4.8) 
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∂L∂L� = 0		 ⇒ 12 (I − (1 − α)I�) p Q��Q�+Q�q + 12 (D − (1 − α)D�) p Q��Q�+Q�q + 

																							(S − (1 − α)S�) R W
	+
ST − (C + (1 − α)C�) = 0                                                 

                      ------------- (4.9) ∂L∂L� = 0	 ⇒ 				IQ� − (B + (1 − α)B�) = 	0 																	⇒ 				IQ� = (B + (1 − α)B�)                              -------------
(4.10) 

Solving the equations, the expression for optimum quantity of salary rise is  																										Q�∗ = ([r(�AQ∗)[�)�                                          ------------

(4.11) 
and the optimum Re-order level is  

 																										Q�∗ = k �A(�AQ)���A(�AQ)��l Q�∗                                 ------------

(4.12) 
where 	α∗ is a root of  (I − (1 − α)I�)(B + (1 − α)B�)� + (D − (1 − α)D�)Q��I� + 2(S − (1 − α)S�)RI� − 2(C +(1 − α)C�)Q�I� = 0 [I − (1 − α)I�][B + (1 − α)B�]� + [D − (1 − α)D�]	Q��I� + 2[S − (1 − α)S�]RI� −2[C + (1 − α)C�][B + (1 − α)B�]I = 0                                                                     -------------(4.13) 
which is a cubic equation in (1 − α). 

 Solving this equation we obtain α		and hence Q�∗,	Q�∗ , I∗, D∗, S∗, B∗, T∗, and	C∗, the optimal values 

which lie within the tolerance limit of fuzzy range. 

 

Remark: 4.1.1 

When Q� = 0, Equation (4.13) reduces to  [I − (1 − α)I�][B + (1 − α)B�]� + 2[S − (1 − α)S�]	RI� − 2[C + (1 − α)C�][B + (1 − α)B�]I = 0 

    

 (4.14) 

which is the equation derived in [7] 

Equation (4.14) is cubic equation in (1 − α) and the equation can be written as  IB��(1 − α)� − uB��I − 2BB�I − 2IC�Bv(1 − α)� − (2BB�I − I�B� − 2RI�S� − 2IB�C − 2II�B)(1 −α) − (IB� + 2RI�S − 2ICB) = 	0                               (4.15)                                        
  

which is the equation derived in [6] 
 
Example: 
 Let us assume that a person is possessed with the following fuzzy costs and goals I = 50000, I� = 13000	;	     D = 11500, D� = 5000	; S = 20000, S� = 5000	;	     B = 10000, B� = 1400	; 
C=6000, C� = 500  ;            R=0.05 

 Substituting these values in equation (4.13), we obtain the following optimal values α = 1 (the 
maximum value) Q�∗ = 0.2, T∗ = 4, Q�∗ = 0.87	 and hence I∗ = 50000, S∗ = 20000, D∗ = 11500, B∗ = 10000,	 C∗ = 6000  which are original values of I, S, D, B and C. These are the best optimal values. We can ever 
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get for this problem as the aspiration level  α  takes the maximum value (α = 1). From this result we 
conclude that the person can leave this present job after 4 years provided that the increase in salary in the 
new job should be atleast 20% and the Re-order level of salary (Re-order level of employees) for a certain 
company should be atleast 87% of I, the initial income. With variations in R, the same problem can also be 
solved. 

 Comparison of the crisp model with the fuzzy model for various combinations of extreme limits of I, 
S, D, C and B for R=0.05 in the above example is given in the following table. 

Analysis on Comparison Table – 1 

 With R=0.055, it is found by the fuzzy model that the aspiration level α to be 0.8419 and the optimal 
cost being Rs. 6016 with the optimal time of quitting as 3.9 years with new salary rise being 21% and the 
Re-order level in salary (Re-order level of employees)being 95%. But with different crisp parameter 
combinations, only three values (1,2 and 6) fall within the permissible expenditure range (6000-6500). 
These three expenditure values are greater than the fuzzy C∗ value. Hence to get optimal solution for this 
problem by crisp model, the above eight different combinations are not sufficient, some more combinations 
of parameters had to be worked out to get this optimal value  C∗ = 6016 , which is a cumbersome work, 
where as the fuzzy model simplifies the work of getting the optimal value. This is one of the advantages of 
fuzzy applications in day today life problems. 

5. Sensitivity Analysis 

 Consider the sensitivity analysis [6, 7] on EOQ’s and other costs with the variations in the tolerance 
limit of total cost C which is shown in the following table. 

Analysis on Comparison Table – 2 

 In table – 2, we study the effect of variations on R. As the cost of living index changes from place 
to place, the rate of decrease in real income also varies from place to place. For the people dwelling in 
different places with same I, D, S, C and B along with the same permissible variations in I�	, D�	, S�	, C�		and	B�	, we observe from the above table that as R increases, α decreases to zero. Further Q�∗  and Q�∗ increases slightly. Also we observe that I∗, D∗, S∗	and		T∗	decreases and C∗ and B∗ increases 
within the permissible range as R increases. 

 Tables similar to Table – 2 can also be constructed for variations in I�	, D�	, S�	, C�		and	B�	 
individually and the corresponding changes in α , Q�∗ , Q�∗ , T∗ and other values can be studied. 

6. Conclusion 

 In this paper, we have seen a real life inventory problem faced by an employee in connection with his 
change of jobs, which could be solved easily by applying fuzzy inventory model. Sensitivity analysis is 
presented. This model can be extended to inventory problems under several constraints also.  

References 

[1] Bellman R.E, Zadeh L.A., ( 1970) Decision making in a fuzzy environment, Management Sciences, 
Volume 17, pp.141 – 164. 
[2] Carlson,C., and Korhonen,P., (1986) A parametric approach to fuzzy linear programming, Fuzzy sets 
and systems, Vol.20, pp 17-30. 
[3] Dutta.D, J.R.Rao and R.N.Tiwari, (1993) Effect of tolerance in fuzzy linear fractional programming, 
Fuzzy sets and systems, 55, pp 133-142. 
[4] Glenn.T.Wilson, (1982) The square root rule for employment change, Operational Research Society, 
33, pp 1041-1043. 
[5] Hamdy A.Taha, (1988) Operations Research- An Introduction Sixth edition, prentice Hall of India 
private limited, New Delhi.  



Mathematical Theory and Modeling  www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 
Vol.1, No.1, 2011 
 

25 | P a g e 
www.iiste.org 

[6] Kadambavanam.K and Punniakrishnan.K. (2011) “Fuzzy Inventory Model Allowing Shortages and 
Storage Constraint” International Journal of Production Technology and Management Research to be 
published.  
[7] Kadambavanam.K and Punniakrishnan.K. (2011) “Inventory Model In a Fuzzy Environment With 
Exponential Membership Cost Functions”  Ciit International Journals to be published. 
[8] Kuhn.H.W and Tucker.A.W. (1951) Non-linear programming. In.J.Neyman (ed), proceedings second 
Berkely symposium on mathematical statistics and probability, University of california pracil, pp.481-498.  
[9] Rajalakshmi Rajagopal and M.Jeeva, (2001) Fuzzy Inventory Model in Man Power Planning, 
proceedings of the National conference on mathematical and computational models, December 27-28,PSG 
college of Technology, Coimbatore, India. 
[10] Roy.T.K. and Maiti.M., (1995) A fuzzy inventory model with constraint. Opsearch, Volume 32, No.4, 
pp.287-298. 
[11] Trappey, J.F.C.,Liu, C.R. and Chang, T.C., (1988) Fuzzy non-linear programming. Theory and 
applications in manufacturing, Int. J. Production Research, Vol 26, No.5, 975-985. 
[12] Zimmermann.H.J., (1996) Fuzzy set theory and its applications. Allied publishers Limited, New Delhi 
in association with Kluwar Academic publishers 2nd Revised Edition, Boston. 



Mathematical Theory and Modeling  www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 
Vol.1, No.1, 2011 
 

26 | P a g e 
www.iiste.org 

Author Biography 

K.Punniakrishnan,     

Associate Professor In Mathematics, 

Sri Vasavi College, Erode-638316. Tamilnadu.   

   

The author was born on 3rd June 1955 at Kalipatti, Erode District. He did his post-graduate studies at 
Madras University, Madras in 1980. In 1987 he completed his M.Phil degree in the Bharathiar University, 
Coimbatore. In 1994 he completed his M.Ed degree in Madras University, Madras. His specialized area in 
M.Phil is Functional Analysis. At present he is doing part time Ph.D., degree in the Bharathiar University, 
Coimbatore. His area of research is Fuzzy Inventory Backorder models.  

Now the author is working at Sri Vasavi College, Erode, affiliated to Bharathiar University, Coimbatore. He 
is having 30 years of teaching experience both in U.G and P.G level and 15 years of research experience. 
So, far he has produced 40 M.Phil candidates. Now his broad field of research is analyzing optimization 
techniques in a Fuzzy Environment. His research articles are to be published in many International and 
National Journals. 

He is a member of  

    (i) Board of studies (UG) in Autonomous Colleges, 

    (ii) Panel of Resource Persons, Annamalai University, Annamalai Nagar and IGNOU.  

 

Dr.K.Kadambavanam,   

Associate Professor In Mathematics, 

Sri Vasavi College, Erode-638316. Tamilnadu.   

 

The author was born on 27th September 1956 at Palani. He did  his post-graduate studies at Annamalai 
University, Annamalai Nagar in 1979. In 1980 he completed his M.Phil degree in the same University. His 
specialized area in M.Phil is Stochastic Processes. In 2006, Ph.D., degree was awarded to him in the 
Bharathiar University, Coimbatore. His area of research is Fuzzy Queueing models.  

Now the author is working at Sri Vasavi College, Erode, affiliated to Bharathiar University, Coimbatore. He 
is having 31 years of teaching experience both in U.G and P.G level and 15 years of research experience. 
So, far he has produced 15 M.Phil candidates and 1 Ph.D., scholar. Now his broad field of research is 
analyzing optimization techniques in a Fuzzy Environment. In 2005, he has availed project on fuzzy 
inventory models, supported by University Grants Commission, Hyderabad. He organizes a National Level 
Seminar on ‘Recent Trends in the application of Mathematics and Statistics with reference to Physical and 
Social Sciences’ sponsored by University Grants Commission, Hyderabad at Sri Vasavi College, Erode. His 
research articles are published in many International and National Journals, and in edited book volumes. 

He is a member of  

    (i) Board of studies (PG) in Bharathiar University, Coimbatore, 

    (ii) Kerala Mathematical Association, 

    (iii)Panel of Resource Persons, Annamalai University, Annamalai Nagar, 

    (iv) Doctorial Committee for the Ph.D., program, Gandhigram Rural University Gandigram 

 



Mathematical Theory and Modeling  www.iiste.org 
ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 
Vol.1, No.1, 2011 
 

27 | P a g e 
www.iiste.org 

 

 

Figure I 

Figure – I shows the decrease in real income till the time of quitting, that is, T years 

  

 
Figure - II 

 
Figure - III 

Figure – II represents the membership function for real wage, deficit in cost or setup cost.  

Figure – III represents the membership function for objective function or upper limit for decrease in real 

income. 

Table – 1 

Comparision Table (R = 0.055) 
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S. 
No 

Model Real 
Income 

Shortage 
(Deficit) 

Cost 

Setup 
cost 

Upper 
Limit for 

decrease in 
Salary 

Optimal 
increase 
in new 
Salary 

Optimal      
Re-order 

Level 

Optimal 
Time of 
Quitting 

Average 
Total 
Cost 

Aspiration 
Level 

    I D S B Q1* Q2* T* C* } 

1 
Crisp 
Model 

50000 11500 20000 10000 0.20 0.87 3.6 6028 - 

2 
Crisp 
Model 

50000 11500 20000 10500 0.21 0.91 3.8 6229 - 

3 
Crisp 
Model 

50000 10000 15000 10000 0.20 1.00 3.6 5688 - 

4 
Crisp 
Model 

50000 10000 15000 10500 0.21 1.05 3.8 5905 - 

5 
Crisp 
Model 

40000 11500 20000 10000 0.25 0.87 4.5 5983 - 

6 
Crisp 
Model 

40000 11500 20000 10500 0.26 0.91 4.8 6186 - 

7 
Crisp 
Model 

40000 10000 15000 10000 0.25 1.00 4.5 5660 - 

8 
Crisp 
Model 

40000 10000 15000 10500 0.26 1.05 4.8 5879 - 

9 
Fuzzy 
Model 

47945 10710 19210 10221 0.21 0.95 3.9 6016 0.8419 
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Table – 2 

Effect of Variations in R 

S. 
No R } Q1* Q2* T* I* D* S* C* B* 

1 0.050 1.0000 0.20 0.87 4.00 50000 11500 20000 6000 10000 

2 0.055 0.8418 0.21 0.95 3.88 47943 10709 19209 6079 10221 

3 0.056 0.8120 0.22 0.97 3.85 47556 10560 19060 6094 10263 

4 0.057 0.7830 0.22 0.99 3.83 47179 10415 18915 6109 10304 

5 0.058 0.7546 0.22 1.01 3.81 46810 10273 18773 6123 10344 

6 0.059 0.7266 0.22 1.02 3.79 46446 10133 18633 6137 10383 

7 0.060 0.6990 0.23 1.04 3.77 46087 9995 18495 6151 10421 

8 0.065 0.5689 0.24 1.13 3.67 44396 9345 17845 6216 10604 

9 0.070 0.4490 0.25 1.23 3.59 42837 8745 17245 6276 10771 

10 0.080 0.2400 0.28 1.44 3.45 40120 7700 16200 6380 11064 

11 0.090 0.1800 0.28 1.51 3.15 39340 7400 15900 6410 11148 

12 0.092 0.0800 0.30 1.64 3.23 38040 6900 15400 6460 11288 
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