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Abstract 
 

  In the Bayesian approach to inference, all unknown quantities contained in a probability model for the 

observed data are treated as random variables. Specifically, the fixed but unknown parameters are viewed 

as random variables under the Bayesian approach. In this paper, Bayesian approach is employed to 

making inferences on the semiparametric regression model as mixed model , and we prove some theorems 

about posterior.  
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1. Introduction 
 

  Consider the model: 

    ∑               
 
                                                       (1) 

  Where          response variables and the unobserved errors are          are known to be i.i.d. normal 

with mean 0 and covariance   
   with   

  unknown. 

  The mean function of the regression model in (1) has two parts. The parametric ( first part ) is assumed to 

be linear function of p-dimensional covariates     and nonparametric (second part)           is function 

defined on some index set     . Inferences a bout model (1) such as its estimation as well as model 

checking are of interest.  

   A Bayesian approach to (fully) semiparametric regression problems typically requires specifying prior 

distributions on function spaces which is rather difficult to handle. The extent of the complexity of this 

approach can be gauged from sources such as Angers and Delampady [1], and Lenk [7], and so on.  

  In this paper, a simple Bayesian approach to semiparametric regression. By using penalized spline for the 

nonparametric function ( second part ) of the model (1) we can representation semiparametric regression 

model (1) as mixed model and Bayesian approach is employed to making inferences on the resulting 

mixed model coefficients, and we prove some theorems about posterior. 

2. Mixed Models 
 

  The general form of a linear mixed model for the ith subject (i = 1,…, n) is given as follows 

[9],[12],[13], 

        ∑       
 
          ,        (    )                                           (2) 

where the vector    has length   ,    and     are, respectively, a      design matrix and a       

design matrix of fixed and random effects.   is a p-vector of fixed effects and     are the   -vectors of 

random effects. The variance matrix    is a       matrix and    is a       matrix. 

  We assume that the random effects                                and the set of error terms 

          are independent. In matrix notation, 

          .                                                (3) 

Here                  has length    ∑   
 
   ,      

      
    is a     design matrix of fixed 

effects, Z is a     block diagonal design matrix of random effects,    ∑   
 
    ,      

      
    is a 

q-vector of random effects,                   is a       matrix and                   is a 

      block diagonal matrix. 

3. Spline Semiparametric regression and Prior  
 

 The model (1) can be expressed as a smooth penalized spline with q degree, then it's become as (see 

[12]): 

    ∑       ∑           
  

   
 
    ∑              

 
     

 
    ,                         (4) 



Mathematical Theory and Modeling                                                                                   www.iiste.org 
ISSN (Paper)2224-5804 ISSN (Online)2225-0522  
Vol 3, No. 12, 2013  

 

2 

 

where         are inner knots                     . 

  By using a convenient connection between penalized splines and mixed models. Model (4) is rewritten as 

follows (see [9,12,13]) 

                                                                                                                           (5) 

where 

   [

  

 
  

]  ,      
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]
 
 
 
 

 

We assume that the function   is: 

                                                                              (6) 

And its prior guess    can be written as: 

                                                                                    (7) 

Further, some of the a priori information penalized spline coefficients can be translated into: 

      ;                        
   

        ;                       
                                                        (8) 

      ;                       
   

  The term    in (5) is the pure polynomial component of the spline, and    is the component with spline 

truncated functions with covariance   
   , where       . Letting        

    
   be the parameter vector, 

the mixed model specifies a       
    prior on   as well as the likelihood,           

    
  . To specify a 

complete Bayesian model, we also need a prior distribution on      
    

  . Assuming that little is known 

about   , it makes sense to put an improper uniform prior on   . Or, if a proper prior is desired, one could 

use a       
    prior with   

  so large that, for all intents and purposes, the normal distribution is uniform 

on the range of  . Therefore, we will use         . We will assume that the prior on   
  is inverse 

gamma with parameters    and    – denoted           – so that its density is  

      
    

  
  

     
   

             ( 
  

  
 )                                              (9) 

Also, we assume that: 

  
             

 

   Here                are “hyperparameters” that determine the priors and must be chosen by the 

statistician. These hyperparameters must be strictly positive in order for the priors to be proper. If    and 

   were zero, then       
   would be proportional to the improper prior 

 

  
  , which is equivalent to log(  ) 

having an improper uniform prior. Therefore, choosing    and    both close to zero (say, both equal to 

0.1) gives an essentially noninformative, but proper, prior. The same reasoning applies to          . The 

model we have constructed is a hierarchical Bayes model, where the random variables are arranged in a 

hierarchy such that distributions at each level are determined by the random variables in the previous 

levels. At the bottom of the hierarchy are the known hyperparameters. At the next level are the fixed 

effects parameters and variance components whose distributions are determined by the hyperparameters. 

At the level above this are the random effects,   and  , whose distributions are determined by the variance 

components. The top level contains the data, y. ( see [13] ) 

4. Posterior calculations
 

  

  We have the model 

      
    

          
      

                                            (10) 

where           
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  Unless   has a normal prior distribution or a hierarchical prior with a conditionally normal prior 

distribution, analytical simplifications in the computation of posterior quantities are not expected. For 

such cases, we have the joint posterior density of the penalized spline coefficients   and the error 

variances   
  and   

  given by the expression. 

       
    

               
    

          
    

   

Where   is the likelihood. From (10),   can be expressed as 

        
    

        
      

   
  

 ⁄       
  

 
            

      
              

Proceeding further, suppose    of the form 

       
    

         
    

                                                  (11) 

which is constant in  , is chosen. 

  Markov Chain Monte Carlo (MCMC) based approaches to posterior computations are now readily 

available. For example, Gibbs sampling is straightforward (see [ 1,13]).  

 Note that            

where    [
       

           
] 

and   
    [

       

   
           

] 

we see 

      
    

              
      

                                                (12) 

  However, the prior of   given   
  specified that     

           
      

  Therefore, it follows that 

    
    

          
       

                                                     (13) 

where   
      

     

      
    

                                                                      (14) 

where 

     
         

       
                                                       (15) 

     
      

         
       

                                       (16) 

We can rewrite covariance of Y given     
  and   

  as 

  
      

     
       

        
  (          

 
  

 

  
 
  )    

                         
  (    

  
 

  
   )

  

  , where      . 

Result 1:       
    

     {(    
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  (    
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}                                                (17) 

Proof: 

Since            
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 By same way we can prove the covariance is   
 (    

  
 

  
   )

  

. 

Now proceeding as in [3], we employ spectral decomposition to obtain           , where    

                 is the matrix of eigenvalues and B is the orthogonal matrix of eigenvectors. Thus,  

  
        

        
       

        
         

        
 (   

  
 

  
 
 )    

                                  
             

where   =   
    

 . Then, the first stage (conditional) marginal density of   given   
  and   can be written 

as 

      
       

 

(    
 )

  ⁄  
 

            ⁄       
 

   
   

                

   
 

(    
 )

  ⁄  
 

 ∏         
  ⁄ 

   

     
 

   
  ∑

  
 

     

 
     ,                                          (18) 

where                     . We choose the prior on   
 ,   =   

    
 , qualitatively similar to the used 

in [1]. Specifically, we take      
      to be proportional to the product of an inverse gamma density 

   
                    

     
          for   

  and the density of a        distribution for   (for 

suitable choice of   ,   , b and a ). Conditions apply on a and b such that (see [1]): 

1- The prior covariance of     
          

            
     is infinite. 

2- The fisher information number   
            

             
  is minimum. 

3- The prior mode   
      

      
  is greater than 0. 

This can be done by choosing       and                

 Once      
     is chosen as above, we obtain the posterior density of   given  , the posterior mean and 

covariance matrix of   as in the following theorems. 

Theorem1: the posterior density of   given   is: 

          
    ⁄    
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       ⁄ (    ∑
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                                (19) 

Proof: 
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Theorem2: The posterior mean and covariance matrix of   are: 

                                                                      (20) 

And  

         
 

       
  [(    (∑

  
 

     

 
   ))   ]   

 

       
     [(    (∑

  
 

     

 
   ))     

       ]                                                                                                      (21) 

where                     

Proof: 

From (14): 

           

                  
         

       
         

                  
          

                

                
  

 

  
        

               

Since   is the orthogonal matrix of eigenvectors, then        and     
  . 

  Therefore  

                            

                                     , 

where the expectation                  is taken with respect to          ( see theorem 1 above ). And 

by the same way we can prove the variance of    given  . 

5. Model checking and Bayes factors 
 

  An important and useful model checking problem in the present setup is checking the two models 

              versus                . 

  Under                
    

    is given the prior        
    

         , whereas under   ,      
   

induced by        
    

   is the only part needed. In order to conduct the model checking, we compute the 

Bayes factor,    , of    relative to   : 

         
       

       
                                                          (22) 

where         is the predictive (marginal) density of   under model             We have 

                                        ∫          
       

      
  

and 

                                        ∫         
    

         
    

        
    

  

  As in the previous section      
    

   will be constant in F, while   
  is inverse gamma and is 

independent of      
    

  which is given the      prior distribution. (Equivalently,     
    

  is given 

the      , Specifically,       
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 ) , where    and    (small) are suitably 

chosen. Therefore, 
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  Further, using (11) it follows that:  
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6- Simulation results 

    In this section, we illustrate the effectiveness of the our methodology. We generated observations from 

the model (1) with the following regression functions which represent a variety of shapes: 

(i)                        ,                                                                                                 (26) 

(ii)                                 
 

 
  

 .                                                                 (27) 

  The settings for the simulation study are as follows. The observations for the design variable are 

generated from uniform distribution on the interval [-1,1], for various sample sizes. These values are kept 

fixed for all settings to reduce simulation variability. The sample size taken is  =150. 

  For the error distribution we used normal distribution       
  , where        ,      and    . We 

have tried with different choices of   as well. The penalty parameter   is chosen by minimizing the 

generalized cross validation (   ) criterion. 

  To give an impression on the variability of the obtained estimators, we plot in figure (1) a scatter plot of 

the randomly generated data sets together with the fitted values from the penalized LS. regression spline 

estimation method.  Table (1) presents summary values of the (AMSE) and (AMAE) for the estimation 

method. From this table we can see that the values of (AMSE) and (AMAE) when         are smaller 

than that (        and      ), which were (0.01656268) and (0.008447995) respectively. While the 

values of (AMSE) and (AMAE) are smaller when           and       ) respectively for second test 

function were  (0.009150507) and (0.004085605) respectively. 

Table (1) result of the AMSE and AMAE for Bayesian semiparametric regression 

 

Test function   AMSE AMAE 

   

0.125 0.04299587 0.01400477 

0.25 0.03975184 0.01345516 

0.5 0.01656268 0.008447995 

   

0.125 0.009150507 0.00641508 

0.25 0.009218403 0.006443437 

0.5 0.009684469 0.004085605 
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Figure (1) fitted curves from penalized regression spline estimation of first ( right side ) and second test 

function ( left side )  with design variable   distributed uniform distribution [-1,1] with the error distributed 

normal distribution (    ),              and      , and sample size n=150 
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  Figure (2) shows the posterior of    and   given   ( equation (14)) for above test functions((22) and 

(23)), where red curve represents the posterior of the first test function (22) while blue curve represents 

the posterior  of the second test function (23). 

 

Figure (2) posterior of  beta     and   given    

  Figure (3)  below shows the number for  iterations of the Gibbs sampler which used in this study. Which 

was 600 iterations for this data. While Figure (4) shows density estimates based on 600 iterations of    
  

and   
 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

7- Conclusions 

1- The posterior density of   given   in Bayesian semiparametric regression is: 
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Figure (3) shows density estimates based on 600 iterations of  

  
  and   

  

 

Figure (4)  shows 600 iterations of the Gibbs sampler for 

the this data 
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2- The posterior mean of   in Bayesian semiparametric regression is: 

                                

3- The posterior covariance matrix of   in Bayesian semiparametric regression is: 
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4- The Bayes factor in Bayesian semiparametric regression for testing the two models        

       versus                 is:  

         
       

       
 

     where         is the predictive (marginal) density of   under model             We have    

         ∫          
       

      
   

       and 

                ∫         
    

         
    

        
    

 . 

5- In a simulation study of Bayesian semiparametric regression we observe that : 

(i) The values of (AMSE) and (AMAE) when         are smaller than that (        and 

     ), which were (0.01656268) and (0.008447995) respectively. 

(ii) The values of (AMSE) and (AMAE) are smaller when           and       ) respectively 

for second test function which were  (0.009150507) and (0.004085605) respectively. 
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