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Abstract 

In this study, we generated the future and present values of annuity based on the interest rate theory.  This was 

anchored on the fact that every compound interest problem involves the annual rate and the rate per 

compounding period.  It was also shown that as the frequency of compounding periods increases, the compound 

amount behaviour ( )n

n
r+1 tends to exponential growth rate ( )r

e .   

Keywords:  Annuity Future Value, Annuity Present Value, Continuous Compounding, Compounding Periods, 

Periodic Payments. 

 

1. Introduction 

A common component to all financial transactions is the investment of money to interest.  In order to analyze the 

financial transaction, a clear understanding of the concept of interest is required (Marcel, 2013). 

Interest can be viewed from different contexts.  It is the cost of borrowing money for some period of time.  

However, the amount of interest depends among other things, on the amount of money borrowed and repayment 

time (Wayne, 2009). 

Suppose )(tA  denotes the amount of value of an investment at time t  years.  Then the interest earned during 

the time t  years and st +  years is  )( stA +  - At   and the annual interest rate r  = 
)(

)()1(

tA

tAtA −+

     (1)

 

   

   1.1   Generating Compound Amount from the Interest Variables 

If the simple interest is denoted by prtI = , where I  is the amount of interest earned after t  years, p  is the 

amount invested and r  is the annual interest rate, then future value of the account after t  years denoted by  

                                     
)1( rtP

prtP

IpF
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+=
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                                                                                  (2)
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If the interest is compounded annually, then the amounts at the end of t  years are specified 
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where ,...2,1,0=t   Thus, the building block for the annual compound interest formula is the simple interest 

formula (Awogbemi, 2012). 

Suppose the interest is compounded n  times in a year.  At the end of every period of time 
n

1  years, the 

period’s interest is added to the principal to earn interest in future periods.  Thus, we have divided the year into 

n  intervals, each with duration of 
n

1  years.  The simple interest formula is applied to p  over each period 

(sub interval).  Thus, for one period, the interest earned is: 

n

r
p

prtI

=

=

 

The future value after one period 
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After three periods: 
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The amount due in t  years If there are n  compounding periods per year is computed as  

( )nt

t n
rpA += 1

                                                                                                                                           (5)
 

Where 
n

r  is the rate per period, r  is the annual interest rate, n the number of compounding periods in a year, 

t  is the number of years and nt  is the total number of compounding periods in t  years. 

 

2. Continuous Compounding of Interest 

An interest is continuously compounded if the number of compounding periods increases infinitely.  The 

implication of this is that as the frequency of compounding increases, ( )n

n n
r+

∞→
1lim  tends to 

r
e  with the 

compound amount ( )nt

n n
rPA +=

∞→
1lim

                                                                                                      (6)
 

Thus the amount due for continuously compounded interest denoted by 

rt
PeA =  (Buchanan, 2010)                                                                                                                           (7)                                

 

 2.1   Lemma 1: 

( ) e
n

rP
n

n
=+

∞→
1lim

                                                                                                                                      (8)
 

2.1.1  Proof: 

Suppose of f  and g  are continuous and differentiable functions on an open interval containing ax = , and that 

∞=∞=
→→

)(lim and )(lim xgxf
axax
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Introducing a dependent variable kky
1

)1( +=  and taking the log of both sides gives 
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(an indeterminate form of the type 
0

0
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By L'Hôpital's Rule, we have    
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We have shown that 1log →y  as 0→k  .The continuity of the exponential function implies that 

0 as 1log
→→ kee

y
.  This implies that 0 as →→ key  (Zenou, 2006) 

Hence, we have proved that  ( ) ek
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2.2  Lemma2:   

( ) rt
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n
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                                                                                                                                (12)
 

2.2.1 Proof: 

The future value for continuously compounded interest assumes that a limit exists.  

Let the limit be L 
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But as n  gets larger, 
n

r  gets really small.  Therefore, log approximation ( ) hh →+1ln  is used to get  
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3. Annuities 

An annuity is a sequence of payments made at regular intervals of time.  The time period in which these 

payments are made is referred to as the term of the annuity (Teresa, 2010).  

An annuity in which payments are made at the end of each payment is called ordinary annuity, where as an 

annuity in which payments are made at the beginning of each period is called an annuity due (Nasiru and 

Awogbemi, 2013). An annuity in which the payment coincides with the interest compounding period is called 

simple annuity, where as an annuity in which the payment period differs from the interest compounding period is 

called a complex annuity. The annuities considered in this study have terms given by fixed time intervals, 

periodic payments equal in size, payments made at the end of the period, and payment periods coincide with the 

interest compounding periods. 

 

3.1   Future Value of Annuity 

Future value of annuity is the sum of compound amount of payments made each accumulating to the end of the 

term. (Awogbemi and Ojo, 2012) 

The future value of an annuity of n payments paid at the end of each investment period into an account that 

earns interest at the rate of i per period is  

                               

ntN
n

r
i

i

i
mF

N

v ==






 −+
= ,

1)1(

                                                      (14)

 

Let the periodic payments of an annuity be denoted by m , the total number of compounding periods in t years 

by ntN =  and the number of compounding periods in a year by n . Then, the future value to which the deposit 

would have grown at the time of 
th

N  deposit is  
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3.2  Present Value of Annuity 

The present value of an annuity is the amount of money at hand that is equivalent to a series of equal payments 

in the future.  The interest is in depositing lump sum that will have the same value as the annuity at the end of 

some time period (Kekere and Awogbemi, 2010) 

Setting the future value based on compound interest to future value of annuity, we have  
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 If a loan is amortized, then the present value of annuity is used to generate the repayment of periodic equal 

installments m  by algebraically solving for it in vP  as      

               
N

v

i

iP
m

−
+−

=
)1(1
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                                                                                                                     (17) 

3.3  Loan Repayment Example 

Suppose a loan of amount P is to be repaid discretely in n  times per year over t  years.  The unpaid portion of 

the loan is charged interest at an annual rate r  compounded n  times per year.  The discrete payment m  could 

be obtained.  The present value of all the payments should equal the amount borrowed. 

If the payment is made at the end of the first compounding period, then the present value of all the payments 

denoted by P is 
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3.4   Mortgage Loan Example 

Suppose a mortgage loan is secured in the amount of L  with n  equal monthly payments of amount m , and 

annual interest rate r  compounded monthly.  Setting the sum of the present values of all the payments to the 

amount loaned implies that  
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Expressing m  as a function of rL,  and ,n
 
we have 
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If kL  denotes the outstanding balance immediately after the k
th 

payments, then kL  is the sum of the present 

values of the remaining payments 
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The amount of interest in the k th
 payment denoted by  
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The repaid amount in the k
th

 repayment denoted by 
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4. Conclusion 

Interest rate theory has been employed as a veritable tool in this research work to generate the future and present 

values of annuity; the results of which have been applied to generate the formulae for the repayment of loans and 

outstanding balance from the k
th

 payment of mortgage loan. 
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