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Abstract 

In this paper, some basic properties of differential forms of smooth map and tangent bundle are 

developed. The l inear  map  defined by  is  the der iva tive of  at a, 

where  is a smooth map and . If  is a smooth bijective map and if the maps 

 are all injective, then  is a diffeomorphism. Finally, it is shown that if X is a 

vector field on a manifold M then there is a radial neighbourhood  of  in  and a 

smooth map  such that 

gh

 and , where  is given 

by .  
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1. Introduction   

S. Kobayashi
1
 and K. Nomizu

1
 first worked on differential forms of smooth map and tangent bundle. Later H. 

Flanders
2
, F. Warner

3
, M. Spivak

4
 and J. W. Milnor

5
 also worked on differential forms of smooth map and 

tangent bundle. A number of significant results were obtained by S. Cairns
6
, W. Greub

9
, E. Stamm

9
, R. G. 

Swan
10

, R. L. Bishop
12

, R. J. Crittenden
12

 and others. 

Let M be a smooth manifold and let S  (M) be the ring of smooth functions on M. A tangent vector  of 

M  at a point  is a linear map S  (M)  such that  

S  (M). 

The tangent vectors form a real vector space  under the linear operations 

S  (M). 

 is called the tangent space of M at a.  

Let E be an n-dimensional real vector space. Let  be an open subset of E and let .  We shall 

define a linear isomorphism . If  is a smooth map of  into a second vector 

space F ,  then the classical  der ivative of  at  a  is  the l inear  map  given by 

 

Moreover, in the special case  we have the product formula 

 S  (O). 

This shows that the linear map S  (O)  given by   is a tangent vector 

of  O at a. Hence, we have a canonical linear map  given by 

.  

 

2. The Derivative of a Smooth Map 

Let  be a smooth map and let .  The l inear  map   defined  by 

 is  ca l led the der iva tive of  at a. It will be denoted by , 
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 S  (N),   . 

If  is a second smooth map, then .  Moreover, for the identity 

map  we have .  In particular, if  is a diffeomorphism, then 

 and  are inverse linear isomorphisms. 

Lemma 1.  Let  , then  and the correspondence  defines a linear 

map from  to . 

Proof. Let  be a smooth map.  induces a homomorphism S  (N)  S  (M) given by 

S  (N), .  

 is a linear map from S (N) to . Moreover, 

S  (N) 

and so .  Clearly  is linear. Therefore, the lemma is proved. 

Proposition 1. Let  be a basis for  and let S  ( ). Then  

 

(a) the functions S  ( ) are given by   

(b) the functions S  ( ) satisfy  

Proof. By the fundamental theorem of calculus we have  

 

 

 

Thus the theorem follows, with  . 

Proposition 2.   The canonical linear map  is an isomorphism. 

Proof. First we consider the case . We show first that  is surjective. Let  and let S 

( ). Write  where the  satisfy conditions (a) and (b) of Proposition 1.  

Since  maps the constant function  into zero, so 

 

 

Since the functions  are independent of  f, we can write . Thus  is 

surjective. To show that  is injective, let  be any linear function in . Then for , . 

Now suppose . Then . Hence  and so  is injective. 

Finally, let  be any open subset of E and let  be the inclusion map. Then  is the 

identity map and we have the commutative diagram 
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Since  is a linear isomorphism, the canonical linear map  is an isomorphism, which 

completes the proof. 

Corollary 1. Let M be a smooth manifold and let . Then dim = dimm   

Proof. Let  be a chart for M such that .  Using the result of Lemma 1 and Proposition 2 

we find dim  = dim  = dim  = dim . 

Proposition 3. The derivative of a constant map is zero. Conversely, let  be a smooth map 

such that  Then, if M is connected,  is a constant map. 

Proof. Assume that  is the constant map  where . Then, for S ( ) is the constant 

function given by . Hence, for , . It 

follows that each . 

Conversely,  assume that   is a smooth map satisfying  and let  be 

connected. Then, given two points  and ,  there exists a smooth curve  such 

that   and . Consider  the  map  .  We  have  

. 

Now using an atlas for N we see that  must be constant. In particular  and so 

. Thus  is a constant map and the proposition is proved. 

 

3. Local Properties of Smooth Maps  

Let  be a smooth map. Then  is called a local diffeomorphism at a point  if the map 

 is a linear isomorphism. If  is a local diffeomorphism for all points , it is 

called a local diffeomorphism of M into N. 

Theorem 1.  Let  be a smooth map where dim M = n and dim N = r. Let  be a given 

point. Then 

(a) If  is a local diffeomorphism at a, there are neighbourhoods U of a and V of b such that 

 maps U diffeomorphically onto V. 

(b) If  is injective, there are neighbourhoods U of a, V of b, and  of 0 in  and 

a diffeomorphism  such that . 

(c) If  is surjective, there are neighbourhoods U of a, V of b, and W of 0 in , and 

a diffeomorphism  such that  where  is 

the projection. 

Proof. By using charts we may reduce to the case .  In part (a), then, we are 

assuming that  is an isomorphism, and the conclusion is the inverse function theorem. 

For part (b), we choose a subspace E of  
 
such that , and consider the map 

 given by  . Then  
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. 

I t  fo l lo ws  tha t   i s  i n j ec t ive  and  th u s  an  i so mo r p hi s m (r = dim Im  + dim E = n + 

dim E ). Thus part (a) implies the existence of neighborhoods U of a, V of b, and  of 0 in E such that 

 is a diffeomorphism. Clearly,   

Finally, for part (c), we choose a subspace E of   such that . Let  be the 

projection induced by this decomposition and define  by  

Then . It follows easily that  is a linear isomorphism. 

Hence there are neighborhoods U of a, V of b and W of  such that  is a 

diffeomorphism. Hence the proof of the theorem is complete. 

Proposition 4. If  is a smooth bijective map and if the maps  are 

all injective, then  is a diffeomorphism. 

Proof. Let dim M = n ,  dim N = r .  Since  is injective, we have . Now we show that r 

= n. In fact, according to Theorem 1, part (b), for every  there are neighborhoods  of a, V of 

 and  of   together with a diffeomorphism  such that the diagram 

 

 

commutes (i denotes the inclusion map opposite 0). 

Choose a countable open covering  of  such that each  is compact and contained 

in some . Since  is surjective, it follows that . Now assume that r > n. Then the 

diagram implies that no  contains an open set. Thus, N could not be Hausdorff. This contradiction 

shows that . Since ,  is a local diffeomorphism. On the other hand,  is bijective. Since it 

is a local diffeomorphism, Theorem 1 implies that its inverse is smooth. Thus  is a diffeomorphism and the 

theorem is proved. 

Definition 1.  A quotient  manifold  of a manifold M is a manifold N together with a smooth map 

 such that  and each linear map  is surjective and thus dim M  dim 

N. 

Lemma 2. Let  make N into a quotient manifold of M. Then the map  is open. 

Proof. It is sufficient to show that, for each , there is a neighbourhood U of a such that the restriction 

of  to U is open. This follows at once from part (c) of Theorem 1. 

 

4. Submanifolds 

Let M be a manifold. An embedded manifold  is a pair , where N is a second manifold and 

 is a smooth map such that the derivative  is injective. In particular, since the maps 

are injective, it follows that dim N  dim M. Given an embedded manifold 

, the subset  may be considered as a bijective map . A submanifold of a 

manifold M is an embedded manifold  such that  is a homeomorphism, when  is 

given the topology induced by the topology of M .  If  N  is a  subset of M  and  is the inclusion map, 

we say simply that N is a submanifold of M. 
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Proposition 5.  Let  be a submanifold of M. Assume that Q is a smooth manifold and 

 

is a commutative diagram of maps. Then  is smooth if and only if   is smooth. 

Proof. If  is smooth then clearly  is smooth. Conversely, assume that  is smooth. Fix a point a  

Q and set . Since  is injective, there are neighbourhoods U, V of b in N and M respectively, 

and there is a smooth map  such that .  

Since N is a submanifold of , the map  is continuous. Hence there is a neighbourhood W of a such that 

. Then , where   denote the restrictions of   to W. It follows that  

 and so  is smooth in W; thus  is a smooth map. Hence the proposition is proved. 

 

5. Vector Fields 

A vector field X on a manifold M is a cross-section in the tangent bundle . Thus a vector field X 

assigns to every point  a tangent vector  such that the map  so obtained is smooth. 

The vector fields on M form a module over the ring S  ( ) which will be denoted by .  

Theorem 2. There is a canonical isomorphism of  onto the S  ( )-module of derivations in the 

algebra S   ( ), i.e., Der S   ( ). 

Proof. Let  be a vector field. For each S ( ), we define a function  on M by 

.  is smooth. To see this we may assume that .  But then 

 is smooth. Hence every vector field X on M determines a map  

S  ( )  S  ( ) given by . 

Obviously,  is a derivation in the algebra S  ( ). The assignment  defines a homomorphism 

Der S  ( ).  

We show now that  is an isomorphism. Suppose , for some . Then   

S  ( ). 

This implies that ; i.e. X = 0. To prove that  is surjective, let  be any derivation in S  ( ). 

Then, for every point ,  determines the vector , given by  

S  ( ). 

We define  by . To show that  this map is  smooth,  fix a point . Using a 

chart, it is easy to construct vector fields  and smooth functions 

 on M such that , (V is some neighbourhood of a). Then 

the vectors  form a basis for . Hence, for each , there is a unique 

system of numbers  such that . Applying  to   we obtain 

. Hence . Since the  are smooth 

functions on M, this equation shows that X is smooth in V; i.e. X is a vector field. Finally, it follows from the 

definition that  . Thus  is surjective, which completes the proof. 

 

6. Differential Equations  

Let X be a vector field on a manifold M. An orbit for X is a smooth map  where  is some 
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open interval such that .  

Consider  the product  manifold . We cal l  a  subse t   radial if for each , 

  or   where  is an open interval on  containing the point 0. The 

union and finite intersection of radial sets is again radial. 

Proposition 6. Let X be a vector field on M. Fix  and . Then there is an interval  and 

an orbit  of X such that . Moreover, if  are orbits for X which agree at 

some  then . 

Proof. For the first statement of the proposition we may assume . In this case i t  is  the  

standard Picard existence theorem.  

To prove the second part we show that the set of  for which  is both closed and 

open, and hence all of . It is obviously closed. To show that it is open we may assume  and 

then we apply the Picard uniqueness theorem, which completes the proof. 

Theorem 3. Let X be a vector field on a manifold M. Then there is a radial neighbourhood  of  

 in  and a smooth map  such that 

    and      

where  is given by . Moreover,  is uniquely determined by X. 

Proof. Let  be an atlas for M. The Picard existence theorem implies our theorem for each 

.  Hence there are radial neighbourhoods  of  in   and there are smooth maps  

such that  and . 

Now set . Then  is a radial neighbourhood of  in . Moreover,  is a 

radial neighbourhood of ; if , then  is an interval  

containing . Clearly,  are orbits of X agreeing at 0, and so by Proposition 6 they 

agree in . It follows that they agree in . Thus the  defines a smooth map  which 

has the desired properties. The uniqueness of   follows from Proposition 6. Thus the theorem is proved. 

 

7. Conclusions  

Differential forms are among the fundamental analytic objects treated in this paper. The 

derivative of a smooth map appears as a bundle map between the corresponding tangent 

bundles. They are the cross-sections in the exterior algebra bundle of the dual of the tangent 

bundle and they form a graded anticommutative algebra. Vector fields on a manifold has been 

introduced as cross-sections in the tangent bundle. The module of vector fields is canonically 

isomorphic to the module of derivations in the ring of smooth functions.   
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