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Abstract 

Inverse scattering refers to the determination of the solutions of a set of differential equations based on known 

asymptotic solutions, that is, the solution of Marchenko equation. Marchenko equation was derived using 

integral equation. The potential function derived from eigenvalues and scattering data seems to be the inverse 

method of scattering problem. The reflection coefficient with one pole and zero reflection coefficients has been 

chosen to solve inverse scattering problem. Again this paper deals with the connection between inverse 

scattering and the Korteweg-de Vries equation and describes variety of examples with Korteweg-de Vries 

equation: the single-soliton solution, the two-soliton solution and finally the N-soliton solution. Throughout the 

work, the primary objective is to study some mathematical techniques applied in analyzing the behavior of 

soliton in the KdV equations.     
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1. Introduction 

In the area of scattering theory in physics, the inverse scattering problem determines the characteristics of an 

object (its shape, internal constitution, etc.) from measurement data of radiation or particles scattered from the 

object. In physical terms the problem is essentially one of finding the shape (or perhaps mass distribution) of an 

object which is mechanically vibrated, from a knowledge of all the sounds that makes, i.e. from the energy or 

amplitude at each frequency. But in mathematics, inverse scattering refers to the determination of the solutions 

of a set of differential equations based on known asymptotic solutions, that is, the solution of Marchenko 

equation [1]. Examples of equations that have been solved by inverse scattering are the reflection coefficient 

with pole and zero reflection coefficient. It is the inverse problem to the direct scattering problem, which is 

determining the distribution of scattered radiation on the characteristics of the scatterer. Since its early statement 

for radio location, the problem has found vast number of applications, such as echolocation, geophysical survey, 

nondestructive testing, medical imaging, quantum field theory, to name just a few [12].  

 

The Korteweg-de Vries equation [3] describes the theory of water waves in shallow Channels, such as canal. It is 

a non-linear equation which exhibits special solutions, known as solitons, which are stable and do not disperse 

with time. Furthermore there as solutions with more than one soliton which can move towards each other, 

interact and then emerge at the same speed with no change in shape (but with a time “leg” or “speed up”). The 

soliton phenomenon was first described by John Scott Russell (1808-1882) who observed a solitary wave in the 

Union Canal, reproduced the phenomenon in a wave tank, and named it the "Wave of Translation"[4]. Owing to 

its nonlinearity, the KdV equation resisted analysis for many years, and it did not come under series scrutiny 

until 1965, when Zabusky [5] and Kruskal (see also [5])  obtained numerical solutions, while investigating the 

Fermi-Pasta-Ulam problem [6] of masses coupled by weakly nonlinear springs. From a general initial condition, 

a solution to KdV develops into a series of solitary pulses of the varying amplitudes, which pass through one 

another without modification of shape or speed. The only lingering trace of the strong nonlinear interaction 

between these so-called solitons (like electrons, protons, barions and other particles ending with ‘ons’) [10] is a 

slight forward phase shift for the larger, faster wave and slight backward shift for the smaller, shower one. 

Soliton solutions have subsequently been developed for a large number of nonlinear equations, including 

equations of particle physics, and magneto hydrodynamics. Having yielding a starling new type of wave 

behaviour, the KdV equation soon stimulated a further mathematical development, when in equation soon 

stimulated a further mathematical development, when in 1967, Garden[2], Green, Kruskal and Miura(see also 

[2]) introduced the inverse scattering transform method for determining the solitons that arise from arbitrary 

initial conditions. This technique represented a major advance in the mathematical theory of PDFs. As it made it 
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possible obtain closed-form solutions to nonlinear evolution equations that were previously beyond the reach of 

analysis. This breakthrough initiated a period of rapid developments both in describing the properties of KdV 

solitons and in generalizing the approach to other nonlinear equations including the Sine-Gordon, non linear 

Schrödinger and Boussinesq equation.    

       

2. Formulation of  Inverse Scattering Problem 

The inverse scattering technique is applicable to the KdV, Non linear Schrödinger and Sine-Gordon equations 

.We now describe how the inverse scattering transform can be used to construct the solution to the initial-value 

problem for KdV equation. In this section we shall summarize the results, and we discuss some specific 

examples.We wish to solve the KdV equation 

                                               ,06 =+- xxxxt uuuu        0>t , - .¥<<¥ x             (1) 

with )()0,( xfxu = . It is assumed that f is a sufficiently well-behaved function in order to ensure the 

existence of a solution of the KdV equation and also of the Sturn-Liouville equation 

                                       0)( =Y-+Y uxx l ,       - .¥<<¥ x                                      (2) 

The first stage to set )()0,( xfxu =  and solve equation (2), at least to the extent of determining the discrete 

spectrum, -
2

nk , the normalization constants, )0(nc , and the reflection coefficients, ).0;(kb  The time evolution 

of these scattering data is then given by equations. 

                                               tconskn tan= ;  )4exp()0()( 3tkctc nnn =                          (3) 

                                          and ).8exp()0;();( 3tikkbtkb =                                               (4) 

The function F, defined by the equation 

                                                    .)(
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 Now the Marchenko equation for the above equation is              

     .)8exp()0;(
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         (5)         

Note that F also depends upon the parameter .t  The Marchenko equation  for K(x,z;t) is therefore  

ò =++++ 0);();,();();,( dytzyFtyxKtzxFtzxK . Finally the solution of the KdV equation can be 

expressed as ),(2),( txK
x

txu
¶

¶
-=  and   );,(),( txxKtxK = .

 

3. Procedure  

We first write the KdV equation in the convenient form       

                                              .06 =+- xxxxt uuuu                                                             (6)  

Then one simple way of showing a connection with the Sturm-Liouville problem is to define a function u(x,t) 

such that                   xvvu += 2
                                                                                           (7) 

Equation (7) is called the Miura Trasformation. Direct substitution of (7) into equation (6) then yields 

                                       026)2)((62 2 =+++++-+ xxxxxxxxxxxxxxxtt vvvvvvvvvvvvv  

which can be rearranged to give 

                                             0)6(2 2 =+-÷
ø

ö
ç
è

æ
¶

¶
+ xxxxt vvvv

x
v                                         (8) 
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Thus if v  is a solution of    06 2 =+- xxxxt vvvv                                                        (9) 

The above equation is called the Modified KdV equation (mKdV) . 

Then equation (7) defines a solution of the KdV equation (6). Now we recognize equation (7) as a Riccati 

equation for v  which therefore may be linearised by the substitution  

                                              yy xv =                                                                              (10) 

for some differentiable function .0);( ¹txy  The fact that time )(t  occurs only parametrically in equation (7) 

is accommodated in our notation for y  by the use of the semicolon. Equation (7), upon the introduction of (10) 

becomes  0=- yy uxx                                                 (11) 

which is almost the (time-dependent) Sturm-Liouville equation for  y . The connection is completed when we 

observe that the KdV equation is Galilean invariant, that is 

                                               ),,6(),( ttxutxu ll ++®   .¥<<¥- l  

leaves equation (6) unchanged for arbitrary (real) l . Since the x-dependence is unaltered under this 

transformation (t plays the role of a parameter) we may equally replace u by l-u . The equation of y  now 

becomes 0)( =-+ yly uxx                               (12) 

which is the Sturm-Liouville equation with potential u and eigenvalue l . 

Thus, if we able to solve for y , we can then recover u  from equations (10) and (7). However, the procedure is 

far from straightforward since equation (12) already involves the function u which we wish to determine. The 

way to avoid this dilemma is to interpret the problem in terms of scattering data by the potential .u  These data 

are described by the behaviors of the eigenfunction, y , in the form 

                                       
ïî

ï
í
ì

-¥®

+¥®+
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)(
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for ,0>l  with 2
1

l=k  for the continuous spectrum,  

                                     and         )exp()( xkcx nnn »y                       as +¥®x  

for ,0<l  with 2
1

)( l-=nk  for each discrete eigenvalue    )..,,.........2,1( Nn =  

We then show      ),(2)( zxK
dx

d
xu -=  where ),( zxK  is the solution of the Marchenko equation 

                                            ò
¥

=++++
x

dyzyFtxKzxFzxK 0)(),()(),(          (13) 

and F is defined by             å ò
=

¥

¥-
+-=

N

n

ikx

nn dkekbXkcXF
1

2 )(
2

1
)exp()(

p
           (14) 

Let  ),( txu  be the solution of 06 =+- xxxxt uuuu  with )()0,( xfxu =  given: this defines the initial-value 

problem for the KdV equation. Further, let us introduce the function y  which satisfies the equation  

0)( =-+ yly uxx  for some l , and by virtue of the parametric dependence on  t  we must allow ).(tll =  

The solution of the KdV equation can therefore be described as follows. At 0=t  we are given 

)()0,( xfxu =  and so (provided y  exists) we may solve the scattering problem for this potential, yielding 

expressions for ),(kb  nk  and nc  )..,..........1( Nn = If the time evolution of these scattering data can be 

determined then we shall know the scattering data at any later time. This information therefore allows us to solve 

the inverse scattering problem and so reconstruct ),( txu  for .0>t  The procedure is represented schematically 

in the following figure, where )(tS denotes the scattering data, i.e. ),,( tkb  )(tkn  and )(tcn  

)..,..........1( Nn =  
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 Representation of the inverse scattering transform for the KdV equation 

It is clear that the success or failure of this approach now rests on whether, or not, the time evolution of S  can 

be determined. Furthermore, it is to be hoped that the evolution is fairly straightforward so that application of 

this technique does not prove too difficult. We shall demonstrate in the next section how )(tS can be found and 

else show that it takes a surprisingly simple form. However, before we start this, we note the parallel between the 

scheme represented in the above figure and the use of the Fourier transform for the solution of linear partial 

differential equations.  
Consider the equation 

                                                    0=++ xxxxt uuu  

which is one linearization of the KdV equation. If )()0,( xfxu =  then we can write 

        dkekAxf
x

x

ikxò-= )()(    or       dxexfkA
x

x

ikxò-
-= )(

2

1
)(

p
                

and )(kA  is then analogous to the scattering data S(0). Further, if  ò
¥

¥-

-= dkekAtxu wtkxi )()(),(      where          

),(kww =   then 
3)( kkkw -= and the term in w expresses the time evolution of the ‘scattering data’.  

 
4. Reflectionless potentials 

The inverse scattering transform method is best exemplified by choosing the initial profile, )0,(xu  to be a 
2sech  function and in particular one of those which corresponds to a reflection less potential (i.e. 0)( =kb  for 

all k ).Although the solitary wave is already known to be an exact solution of the KdV equation, it is possible to 

obtain this solution by passing a suitable initial value problem without taking the assumption that the solution 

takes the form of a steady progressing wave. This example then affords a simple introduction to the application 

of the technique. 

 
4 (a): Single-soliton solution of KdV equation  

The initial profile is taken to be  xhxu 2sec2)0,( -=                                             (15) 

and so the Sturm-Liouville equation, at 0=t  becomes 

                                          0)sec2( 2 =++ yly xhxx                                           (16) 

which is conveniently transformed by the substitution xT tanh=  (so that 11 <<- T  for ¥<<¥- x ). 

Thus             
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which is the associated Legendre equation. The only bounded solution for )0(2 <-= kl occurs if 11 == kk  

and the solution is proportion to the associated Legendre function )(tanh1

1 xP  i.e. the corresponding 

eigenfunction is            .sec)(tanh)( 1

11 hxxPx -=µy  

and since    2sec 2 =ò
¥

¥-
xdxh  the normalized eigenfunction becomes   hxx sec2)( 21

1

-=y . 

(The sign of 1y  is irrelevant.) Then the asymptotic behavior of this solution yields  

  
xex -» 21

1 2)(y    as +¥®x  so that 
21

1 2)0( =c , and then equation (1.3) gives .2)( 421

1

tetc =
 
This 

transformation is sufficient to the reconstruction of ),( txu  since we have chosen an initial profile for which 

0)( =kb  for all k . Now from equation (1.5) we obtain 
xtetXF -= 82);(

 
which incorporates only one term 

form the summation, the contribution form the integral being zero. The Marchenko equation is therefore 

                                ò
¥ +-+- =++
x

zxtzxt dyetyxKetzxK 0);,(22);,( )(8)(8
 

which implies                           
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which is the solitary wave of amplitude 2-  and speed of propagation 4. 

 
 

 

 

Coding and Output: By using programming language MATHEMATICA.  
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Fig.1      Fig.2 

    
                            Fig.3 

 

4 (b): Two-soliton solution of KdV equation  
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We consider the problem for which the initial profile is   xhxu 2sec6)0,( -=
                 

   (17) 

so that the Sturm-Liouville equation, at 0=t  becomes 0)sec6( 2 =++ yly xhxx          (18) 
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which is the associated Legendre equation. Where xT tanh= . This equation has bounded solutions, for 

)0(2 <-= kl occurs if 11 =k  or 02 =k  of the form                                

                                 ;sectanh
2

3
)(1 hxxx =y      ;sec

2

3
)( 2

2 xhx =y     

both of which have been made to satisfy  the normalization condition. The asymptotic behaviors of these 

solutions are  

    ;6)(1

xex -»y       ;32)( 2

2

-» exy                   as +¥®x  

so that 6)0(1 =c ; 32)0(2 =c , and then equation (3) gives 

                              
tetc 421

1 2)( = ,      .32)( 32

2

tetc =  

As in the above example, the choice of initial profile ensures that 0)( =kb  for all k  and so 0);( =tkb  for all 

t . The function F  then becomes 

                                                    
xtxt eetXF -- += 648 126);(  

(since there are two terms in the series),and the Marchenko equation is therefore 

                  ò
¥ +-+-+-+- =++++
x
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It is clear that the solution for K  must take the form        

                                                    
zz etxLetxLtzxK 2

21 ),(),();,( -- +=  

Since F  is a separable function, collecting the coefficients of 
ze-  and 

ze 2-
, we obtain the pair of equations 
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for the functions 1L  and 2L . Upon the evaluation of the definite integrals these two equations becomes 
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2
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8
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                                                    03412 464
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1
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which are solved to yield 

                                                    0/)(6),( 8572

1 =-= -- DeetxL xtxt
 

                                                    0/)(12),( 472264

2 =+-= -- DeetxL xtxt
 

where                                           
xtxtxt eeetxD 67246428 331),( --- +++=  

 

 The solution of the KdV equation can now be expressed as  
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        )(2),( 2
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which can be simplified to give  
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which is the two soliton solution. 

  
Coding and Output: By using programming language MATHEMATICA   
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4 (c): N-soliton solution of KdV equation  
 We consider the problem for which the initial profile is   

                                            xhNNxu 2sec)1()0,( +-=                                       (20) 

then similarly the N -soliton solution is                                                                        

                                             å
=

±--»
N

n

nxtnxnhntxu
1

222 })4({sec2),(     as ±¥®t  

 

Coding and Output: By using programming language MATHEMATICA. 

(a) 3=N  

                    
    

       

Fig.13 

 

(b) 4=N  
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(c) 5=N  
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                                     Fig.15   
 

(d) 6=N  
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5. Result and discussion 

It is clear from the Fig.1 that the wave moves forward as  t  increases with depth 2 and speed 4 and not changing 

its shape. Plotting the solution shows the canal propagating to the right. A contour plot can also be useful in 

Fig.2. To verify that the numerical solution is the solution, we plot both for a particular value of t (t=0.5 here) 

which illustrated in Fig.3. We see that the two plots agree very well. In fact there is a whole family of single-

soliton solutions parameterized by the depth of the channel. So the deeper the canal the faster the soliton moves 

and the narrower it is. We verified that this does satisfy the KdV equation. Since the solution is valid for positive 

and negative t, we may examine the development of the profile specified at 0=t . The wave profile, plotted as 

a function of x at six different times, is shown in Fig.4-Fig.9. Here we have chosen to plot u-  rather than u , 

this allows a direct comparison to be made with the application of the KdV equation to water waves. The 

solution shows two waves, which are almost solitary where the taller one catches the shorter, merges to form a 

single wave at 0=t  and then reappears to the right and moves away from the shorter one as  t  increases. Also 

we plotted the solution at time t=1 which showed in Fig.10 for a canal of depth 8 and a canal of depth 2.  Thus 

we have created two solitons of the type that we discussed in the previous section. However, there is no linear 

superposition, so the two-soliton solution is not the sum of the two individual solitons in the region where they 

overlap, as one can see form the explicit solutions. It is also seen that these two solutions interact in the area of 

t=0. In Fig.11 showed at negative times, the deeper soliton, which moves faster, approaches the shallower one. 

At t=0 they combine to give equation (17) (a single trough of depth 6) and, after the encounter, the deeper soliton 

has overtaken the lower one and both resume their original shape and speed. However, as result of the 

interaction, the lower soliton experiences a delay and the deeper soliton is speeded up. This is also easily seen in 

a Fig.12 (contour plot). On the other hand, The asymptotic solution for N-soliton of KdV eqaution represents 

separate solitons, ordered according to their speeds; as +¥®t  the tallest (and therefore fastest) is at the front 

followed by progressively shorter solitons behind. All N  solitons interact at 0=t  to form the single 
2sech  

which was specified as the initial profile at that instant. Finally some plots are illustrated as 2D plots, 3D plots & 

Density plots in Fig.13-Fig.16 for different values of N )6,5,4,3..( =Nei where interaction of N- solitons is 

easily seen.  
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6. Conclusions 

In this paper our aim was to understand the mathematical formalism of the inverse scattering problems through 

non-linear differential equation. We have made all efforts to represent the mathematical concept along with 

examples as 3D -Plots, Density Plots, and 2D-Plots for discrete values of time of inverse scattering problems by 

using Computer programming package MATHMATICA [11]. Again we deal with the connection between 

inverse scattering and the Korteweg-de Vries equation. In this section we have described variety of examples 

with Korteweg-de Vries equation: the single-soliton solution, the two-soliton solution and finally the N-soliton 

solution.  
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