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Abstract 

This paper, we develop a numerical method for solving a Bratu-type equations by using the cubic spline 

collocation method (CSCM) and the generalized Newton method. This method converges quadratically if a 

relation-ship between the physical parameter and the discretization parameter h is satisfied. An error estimate 

between the exact solution and the discret solution is provided. To validate the theoretical results, Numerical 

results are presented and compared with other collocation methods given in the literature. 

Keywords: Bratu-type equations, Boundary value problems, Cubic spline collocation method. 

 

1. Introduction 

   The Bratu problem appears in a large variety of applications such as: Fuel ignition model of thermal combustion, 

radiative heat transfer, thermal reaction, the Chandrasekhar model of the expansion of the universe, chemical reactor 

theory and nanotechnology [15, 16]. In [16] a summary of the history of the problem is given. 

   Studies on fuel ignition in thermal combustion theory have been on the increase over the last few years. The 

reason for the increased study is to ensure the safety of working environment especially when working with 

combustible fluid in some petro-chemical engineering processes. Combustion problems are generally characterized 

by strong nonlinearity and singularity, as such in most cases exact solution of combustion problems are very difficult 

to get. Therefore, researchers working in this area have resolved to approximate solutions by either analytical or 

numerical method. 

   Nonlinear phenomena are of fundamental importance in various fields of science and engineering. The nonlinear 

models of real-life problems are still difficult to solve either numerically or analytically. There has recently been 

much attention devoted to the search for better and more efficient solution methods for determining a solution, 

approximate or exact, analytical or numerical, to nonlinear models, [20, 14, 19]. 

Consider the Liouville-Bratu-Gelfand equation [15]  
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where 0> , and   is a bounded domain. We consider the classical Bratu’s problem [16] given by the following 

boundary-value problem 
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which is used to model a combustion problem in a numerical slab. 

   Several numerical techniques, like the variational iteration method (VIM) [9], non-polynomial spline method [7], 

the Adomain decomposition method [3], Chebyshev wavelets method [5, 8], the parametric cubic spline method [6] 

and the Laplace transform decomposition method [4] have been implemented independently to handle the Bratu 

model numerically. 

   In this paper we develop a numerical method for solving a one dimentional Bratu’s problem by using the CSCM 

and the generalized Newton method. First, we apply the spline collocation method to approximate the solution of a 

boundary value problem of second order. The discret problem is formulated as to find the cubic spline coefficients of 

a nonsmooth system YY =)( , where 
mm RR : . In order to solve the nonsmooth equation we apply the 

generalized Newton method (see [10, 11, 12], for instance). We prove that the CSCM converges quadratically 

provided that a property coupling the parameter   and the discretization parameter h  is satisfied. 

Numerical methods to approximate the solution of boundary value problems have been considered by several authors. 

We only mention the papers [13, 14] and references therein, which use the spline collocation method for solving the 

boundary value problems. 

   The cubic B-spline collocation method is widely used in practice because it is computationally inexpensive, easy 

to implement and gives high-order accuracy. In [18, 19] the authors solved a  the Bratu’s problem by using third 

degree splines, where they considerer the collocation points as the knots of the cubic spline space.  In our paper we 

consider a cubic spline space defined by multiple knots in the boundary and we propose a simple and efficient new 

collocation method by considering as collocation points the mid-points of the knots of the cubic spline space. It is 

observed that the collocation method developed in this paper, when applied to some examples, can improve the 

results obtained by the collocation methods given in the literature (see [18, 19, 20, 21, 22, 23, 24], for instance). 

   The present paper is organized as follows. In Section 2, we present the Bratu’s Problem. In Section 3, we 

construct a cubic spline to approximate the solution of the boundary problem and we present the generalized Newton 

method. In Section 4 we show the convergence of the cubic spline to the solution of the boundary problem and 

provide an error estimate. The obtained numerical results are compared to the [18, 19, 20, 21, 22, 23, 24] in Section 

5. Finally, a conclusion is given in Section 6. 

The exact solution of the Bratu’s problem (1) is given by  

 ,
/4)(cosh

/2]1/2)[(cosh
ln2=)(


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in which   is the solution of the equation /4)(cosh2=  . This Bratu problem has zero, one or two 

solutions associated with cc  <  ,> , respectively, where 93.51383071=c  [19–20] satisfies the 

equation /4)(sinh2=4 cc  . 

  In this paper, we shall apply CSCM to find the approximate analytical solution of the boundary and initial value 
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problem of the Bratu-type model. Comparisons with the exact solution shall be performed. 

 

2. Bratu’s Problem 

   Applications of the Bratu type equation are employed in the fuel ignition Model of the thermal combustion theory, 

the model of thermal reaction process, the Chandrasekhar model of the expansion of the universe, questions in 

geometry and relativity about the Chandrasekhar model, chemical reaction theory, radiative heat transfer and 

nanotechnology [7] 

   In this paper, we consider the Bratu’s boundary value problem in one-dimensional planar coordinates in the form  

 



 

0,=(1)=(0)

(0,1),on),(=

uu

uJu
 (2) 

with 
ueJ =  where the physical parameter 0> . 

It is easy to see that J  is a nonlinear continuous function on u ; and for any two functions u  and v , J  

satisfies the following Lipschitz condition:  

 ,..|)()(||))(,())(,(| IxoneaxvxuxvxJxuxJ    (3) 

Now, we define the following interpolation cubic spline of the solution u  of the nonlinear second order boundary 

value problem (6). 

 

3. Cubic spline solution 

   In this section we construct a cubic spline which approximates the solution u  of problem (3), with I  is the 

interval R.),(= baI  

   Let }====<<<<===={= 321110123 bxxxxxxxxxxa nnnnn    be a subdivision of 

the interval I . Without loss of generality, we put ihaxi = , where ni 0  and nabh /)(=  . Denote 

by }),(,0)()(),()({),( 1),(

02

4 1 
 iixx xxPsbsasICICsIS

ii



 the space of piecewise 

polynomials of degree 3  over the subdivision   and of class 
2C  everywhere on I

 
and class 

0C  

everywhere on I . Note that )(),( 1

4 IHIS


 . Let iB , 1,3,=  ni  , be the B-splines of degree 3  

associated with .  These B-splines are positives and form a basis of the space ),(4 IS


.  

Proposition 3.1: Let u  be the solution of problem (2). Then, there exists a unique cubic spline interpolant 

),(4 ISS


  of u  which satisfies:  

 2,,0,=),(=)( nitutS ii   

where 00 = xt , 
2

= 1 ii
i

xx
t


, ni ,1,=  , 11 =  nn xt  and nn xt =2 .  

Proof:  Using the Schoenberg-Whitney theorem (see [1]), it is easy to see that there exits a unique cubic spline 
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which interpolates u  at the points it , 2,0,= ni  .    

  If we put ii

n

i
BcS 





1

3=
= , then by using the boundary conditions of problem (2) we obtain 

0=(0)=(0)=3 uSc  and 0=(1)=(1)=1 uScn . Hence  

 .=
2

2=

ii

n

i

BcS 




 

Furthermore, since the interpolation with splines of degree d  gives uniform norm errors of order )( 1dhO  for 

the interpolant, and of order )( 1 rdhO 
 for the rth  derivative of the interpolant (see [1], for instance), then for 

any )()( 02 ICICu   (see [17]), we have  

 1.,1,=(1),),(=)(  niOutJtS ii   (4) 

The cubic spline collocation method, that we present in this paper, constructs numerically a cubic spline 

ii

n

i
BcS

~
=

~
1

3=



 which satisfies the equation (2) at the points it , 2,0,= ni  . It is easy to see that  

 0,=
~

=
~

13  ncc  

and the coefficients ic
~

, 2,2,=  ni  , satisfy the following nonlinear system with 1n  equations:  

 1.,1,=)),(
~

,(=)(
~ 2

2=

2

2=
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







njtBctJtBc jii

n

i

jjii

n

i

  (5) 

Relations (5) and (6) can be written in the matrix form, respectively, as follows  

 
,=

~
, =

~
C

FCÂ

ÊFÂC





 (6) 

where  

 ,))](,(,)),(,([= 1111

T

nn tutJtutJF   

 ,))](
~

,(,)),(
~

,([= 1111~

T

nn
C

tStJtStJF   

and Ê is a vector where each component is of order (1)O . It is well known that A
h

Â
2

1
= , where A  is a matrix 

independent of h , with the matrix A  is invertible [2]. 

Then, relation (7) becomes  
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,=

~
,=

~

2

2

C

FhCA

EFhAC


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 (7) 

with E is a vector where each one of its components is of order )( 2hO . 

Theorem 3.1 Assume that the penalty parameter   and the discretization parameter h  satisfy the following 

relation:  

 1.<|||| 12



Ah   (8) 

Then there exists a unique cubic spline which approximates the exact solution u  of problem (2).  

Proof:  From relation (7), we have ~

12=
~

C

FAhC  . Let 
11:   nn RR  be a function defined by  

 .=)( ~

12

Y

FAhY   (9) 

To prove the existence of cubic spline collocation it suffices to prove that   admits a unique fixed point. Indeed, let 

1Y  and 2Y  be two vectors of 
1nR . Then we have  

 .||||||||||)()(||
21

2

21   YY FFAhYY   (10) 

Using relation (4) and the fact that 1
2

2=




 j

n

j
B , we get  

 .|||||)()(||))(,())(,(| 21
2121

 YYtStStStJtStJ iYiYiYiiYi   

Then we obtain  

 .|||||||| 21
21

  YYFF YY   

From relation (10), we conclude that  

 .||||||||||)()(|| 21

12

21 

  YYAhYY   

Then we have  

 ,||||||)()(|| 2121  YYkYY   

with ,||||= 12



Ahk   by relation (8). Hence the function   admits a unique fixed point.    

In order to calculate the coefficients of the cubic spline collocation given by the nonsmooth system  

 ),
~

(=
~

CC   (11) 

we propose the generalized Newton method defined by  
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 )),
~

(
~

()(
~

=
~

)()(

1

1

)(1)( kk

kn

kk

CCVICC  





 (12) 

where 1nI  is the unit matrix of order 1n  and kV  is the generalized Jacobian of the function )
~

(
~

CC  , 

(see [10, 11, 12], for instance). 

 

4. Convergence of the method 

Theorem 4.1 If we assume that the penalty parameter   and the discretization parameter h  satisfy the following 

relation  

 1.<||||2 12



Ah   (13) 

then the cubic spline 

~
S  converges to the solution u . Moreover the error estimate  ||

~
|| Su  is of order 

)( 2hO .  

Proof: From (7) and the matrix A  is invertible [2], we have  

 .)(=
~

1

~

12 EAFFAhCC
C

   

Since E  is of order )( 2hO , then there exists a constant 1K  such that 
2

1|||| hkE  . Hence we have  

 .||||||||||||||
~

|| 21

1~

12 hAKFFAhCC
C









   (14) 

On the other hand we have 

 

.|)(
~

)(||)()(|

|)(
~

)(||))(
~

,())(,(|

iiii

iiiiii

tStStStu

tStutStJtutJ








 

Since S  is the cubic spline interpolation of u , then there exists a constant 2K  such that (see [17]),  

 .|||| 2

2hKSu    (15) 

Using the fact that  

 ,||
~

||||
~

|||
~

|
2

2=







   CCBCCSS j

n

j

 (16) 

then, we obtain  

 .||
~

|||| 2

2~ hKCCFF
C

    
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By using relation (14)  and assumption (13) it is easy to see that  

 

.)(||||2

)(
||||1

||||
||

~
||

2

1

2

2

1

1

2

212

12

hKhKA

KhK
Ah

Ah
CC

























  (17) 

We have  

 .||
~

||||||||
~

||   SSSuSu  

Then from relations (15) , (16)  and (17) , we deduce that  ||
~

|| Su  is of order )( 2hO . Hence the proof is 

complete.  

Remark 4.1 Theorem 4.1 provides a relation coupling the parameter   and the discretization parameter h , which 

guarantees the quadratic convergence of the cubic spline collocation 

~
S  to the solution u  of the Bratu’s problem 

(1).   

5. Numerical examples 

   To illustrate the ability and reliability of the method for Bratu’s problem, some examples are provided. The 

results reveal that the method is very effective and simple.  

 

   Consider the case for Bratu’s equation as follows, when 3.5121,= and  

 

The maximum absolute errors in solutions of this problem are compared with methods in [18, 19, 20, 21, 22, 23, 24] 

for 10/1=h and tabulated in Tables 1, 2 and 3. The tables show that our results are more accurate. 

 

Table 1.  Absolute errors for .1=   

x Present wavelet[24] Spline[18] B-Spline[19] LGSM[20] DTM[21] Laplace[22] Decmposition[23] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.65E-13 

3.40E-13 

4.16E-13 

6.93E-13 

9.71E-13 

6.93E-13 

4.16E-13 

3.40E-13 

2.65E-13 

4.22E-12 

8.85E-12 

1.50E-11 

2.09E-11 

2.67E-11 

3.21E-11 

3.71E-11 

4.17E-11 

4.71E-11 

5.77E-10 

2.47E-10 

4.56E-11 

9.64E-11 

1.46E-10 

9.64E-11 

4.56E-11 

2.47E-10 

5.77E-10 

2.98E-06 

5.46E-06 

7.33E-06 

8.50E-06 

8.89E-06 

8.50E-06 

7.33E-06 

5.46E-06 

2.98E-06 

7.51E-07 

1.02E-06 

9.05E-07 

5.24E-07 

5.07E-09 

5.14E-07 

8.95E-07 

1.01E-06 

7.42E-07 

- 

1.00E-10 

2.00E-10 

2.00E-10 

2.00E-10 

2.00E-10 

3.00E-10 

2.00E-10 

2.00E-10 

1.98E-06 

3.94E-06 

5.85E-06 

7.70E-06 

9.47E-06 

1.11E-05 

1.26E-05 

1.35E-05 

1.20E-05 

2.69E-03 

2.02E-03 

1.52E-04 

2.20E-03 

3.02E-03 

2.20E-03 

1.52E-04 

2.02E-03 

2.69E-03 
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Table 2.  Absolute errors for .2=   

x Present wavelet[24] Spline[18] B-Spline[19] LGSM[20] DTM[21] Laplace[22] Decmposition[23] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.46E-13 

3.32E-13 

5.30E-13 

6.12E-13 

7.46E-13 

6.12E-13 

5.30E-13 

3.32E-13 

1.46E-13 

7.56E-12 

1.84E-12 

3.15E-11 

4.37E-11 

5.48E-11 

6.43E-11 

7.20E-11 

7.77E-11 

8.38E-11 

9.71E-05 

1.41E-08 

1.98E-08 

2.42E-08 

2.60E-08 

2.42E-08 

1.98E-08 

1.41E-08 

9.71E-09 

1.72E-05 

3.26E-05 

4.49E-05 

5.28E-05 

5.56E-05 

5.28E-05 

4.49E-05 

3.26E-05 

1.72E-05 

4.03E-06 

5.70E-06 

5.22E-06 

3.07E-06 

1.46E-08 

3.05E-06 

5.19E-06 

5.68E-06 

4.01E-06 

1.30E-06 

2.56E-06 

3.77E-06 

4.87E-06 

5.85E-06 

6.66E-06 

7.29E-06 

7.71E-06 

7.41E-06 

2.13E-03 

4.21E-03 

6.19E-03 

8.00E-03 

9.60E-03 

1.09E-02 

1.19E-02 

1.24E-02 

1.09E-02 

1.52E-02 

1.47E-02 

5.89E-03 

3.25E-03 

6.99E-03 

3.25E-03 

5.89E-03 

1.47E-02 

1.52E-02 

 

 

Table 3.  Absolute errors for 3.51=   

x Present wavetet[24] Spline[18] B-Spline[19] LGSM[20] 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.55E-10 

2.47E-10 

3.45E-10 

4.37E-10 

4.75E-10 

4.37E-10 

3.45E-10 

2.47E-10 

1.55E-10 

9.34E-09 

1.81E-08 

2.56E-08 

3.09E-08 

3.30E-08 

3.16E-08 

2.70E-08 

2.00E-08 

1.17E-08 

6.61E-06 

5.83E-06 

6.19E-06 

6.89E-06 

7.31E-06 

6.89E-06 

6.19E-06 

5.83E-06 

6.61E-06 

3.84E-02 

7.48E-02 

1.06E-01 

1.27E-01 

1.35E-01 

1.27E-01 

1.06E-01 

7.48E-02 

3.84E-02 

4.45E-05 

7.12E-05 

7.30E-05 

4.47E-05 

6.76E-07 

4.56E-05 

7.20E-05 

7.05E-05 

4.41E-05 

  

    

6. Concluding remarks 

In this paper, we have consider an approximation of a Bratu equation problem, presented in [19, 20]. Then we have 

developed a numerical method for solving each nonsmooth equation, based on a cubic collocation spline method and 

the generalized Newton method. We have shown the convergence of the method provided that the physical and the 

discretization parameters satisfy the relation (13). Moreover we have provided an error estimate of order )( 2hO  

with respect to the norm .||||   The obtained numerical results show the convergence of the approximate solutions 

to the exact one and confirm the error estimates provided in this paper. The analytical results are illustrated with two 

numerical examples. The proposed scheme is simple and computationally attractive, and shows a very high precision 

comparing with many other existing numerical methods. 
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