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Abstract 

Let  be a hereditary torsion theory. The purpose of this paper is to extend results about singular (resp. nonsingular) 

modules to -singular (resp. -nonsigular) modules. An R-module is called -singular (resp. -nonsigular) if all its 

elements (resp. none of its elements except 0) are annihilated by -essential right ideals of R. We proved that, when R 

is -nonsingular, the quotient of an R-module by its -singular submodule is -nonsingular. Goldie proved that for 

any submodule N  M, the quotient M/N
**

 is nonsingular. We generalize this result to torsion theoretic setting. Also 

we introduce the concept of Goldie -closure of a submodule as a generalization of Goldie closure. We proved that it 

is equivalent to the concept of -essential closure in the case of -nonsingular modules.      

Keywords: torsion theory, torsion module, torsionfree module, -dense submodule, (non)singular module. 

 

1. Introduction 

Throughout this paper we will denote by R an associative ring with a nonzero identity and by  = (T,F) a hereditary 

torsion theory on the category Mod-R of right R-modules, where T (resp. F) denotes the class of -torsion (resp. 

-torsionfree) R-modules. All modules considered in this paper will be right unital R-modules. 

A submodule N of a module M is said to be -dense in M (denoted N ≤
d

 M) if M/N is -torsion, and M is -torsion if 

and only if all its elements are annihilated by -dense right ideals of R. A submodule N of M is called -essential in M 

(denoted N ≤
e

 M) if N is both -dense and essential in M. In this case M is called a -essential extension of N. The 

intersection of any two -dense (resp. -essential) submodules is again a -dense (resp. -essential) submodule. Any 

submodule that contains a -dense (resp. -essential) submodule is itself -dense (resp. -essential). For any torsion 

theory  there corresponds a radical t such that for every module M, t(M) is the largest -torsion submodule of M. The 

module M is -torsion (resp. -torsionfree) if and only if t(M) = M (resp. t(M) = 0). Every module M admits a 

-injective envelope, i.e. a -injective module containing M as a -essential submodule. For preliminaries about 

torsion theories, we refer to Bland (1998).  

For any module M there is defined a submodule Z(M) which consists of singular elements in M, i.e. elements 

annihilated by essential right ideals. The module M is singular (resp. nonsingular) according to whether Z(M) = M 

(resp. Z(M) = 0), see Goldie (1964).  

Charalambides (2006) introduced the concept of -essentially closed submodules. A submodule N of a module M is 

called -essentially closed in M (denoted N ≤
c

 M if N has no proper -essential extensions in M. 

In this paper we introduce the concept of (non)singularity in a torsion theoretic setting. We say that an element m in a 

module M is -singular if its right annihilator is a -essential right ideal in R. The module M is -singular (resp. 

-nonsingular) if all its elemenets are -singular (resp. if the only -singular element is 0). The notions of 

-singularity and -nosingularity reduce to singularity and nonsigularity respectively if the torsion theory  is chosen 

so that every R-module is -torsion. Generalizing the idea of Goldie closure, we introduce the concept of Goldie 

-closure of a submodule and compare it to that of -essentially closed submodules of Charalambides (2006). We will 

prove that they are equivalent in the case that the module is -nonsingular. Finally, by ann(x), where x is an element 

in some given module M, we mean the right annihilator ideal of x. If we want to emphasize the side (if our module is 

two-sided), we write annr(x) (resp. annl(x)) for the right (resp. left) annihilator of the element x. By (M:x) we mean 

the set {r  R | xr  M}. And by N ≤
e
 M we mean that N is an essential submodule of M. 
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2. -Singular and -Nonsingular Modules 

Definition. Let M be a right module over a ring R. An element m in M is said to be a -singular element of M if the 

right ideal ann(m) is -essential in RR. The set of all -singular elements of M is denoted by Z(M). We say that M is a 

-singular (resp. -nonsingular) module if Z(M) = M (resp. Z(M) = 0). In particular, we say that R is a right 

-nonsingular ring if Z(R) = 0. 

Note that elements of Z(M) are all singular and Z(M) is -torsion. So we have that 

          Z(M) = Z(M)  t(M) = t(Z(M)) = Z(t(M))         ……. (1) 

The following proposition characterizes -singular modules. 

Proposition 1. A module M is -singular if and only if it is both singular and -torsion. 

Proof. Let M be -singular, then Z(M) = M. But Z(M)  Z(M) = M. So M must be singular. Since Z(M) is -torsion, 

so is M. To prove the converse apply the equalities Z(M) = M and t(M) = M to (1). 

In the following proposition, we give some properties of Z(M). 

Proposition 2.  

 (i) Z(M) is a submodule of M, called the -singular submodule of M.  

 (ii) Z(M).soc

(R) = 0, where soc


(R) = {I | I ≤

e
 R}.  

 (iii) If f : M  N is an R-homomorphism, then f(Z(M))  Z(N).  

 (iv) If M is a submodule of N, then Z(M) = M  Z(N). 

 (v) If Mi are modules (i  I) then Z(Mi) = Z(Mi). 

Proof. (i) Clear. (ii) For any m  Z(M) we have ann(m) ≤
e

 R, so soc

(R)  ann(m). This shows that m.soc


(R) = 0. 

(iii) This follows from the fact that ann(m)  ann(f(m)) for any m  M, and (iv) follows directly from the definition. 

(v) Let (mi)I  Z(Mi) then K := ann((mi)I) ≤
e

 R. But K  ann(mi) for each i. So we must have ann(mi) ≤
e

 R for each 

i. This means that (mi)I  Z(Mi). Conversely, let (mi)I  Z(Mi). Then for each i we have ann(mi) ≤
e

 R. Since mi  0 

for only a finite subset J of I, then ann((mi)I) = iJann(mi) and is indeed -essential in R since it is the finite 

intersection of -essential right ideals in R. 

Corollary. (1) Z(RR) is a (two-sided) ideal of R, called the right -singular ideal of RR. (2) If R  0, then Z(RR)  R. 

Proof. By part (i) of the above proposition, we need only show that m  Z(R) and s  R imply that sm  Z(R). This 

is clear from the fact that annr(sm)  annr(m). (2) annr(1) = 0 cannot be -essential in R unless R = 0. 

Proposition 3. The quotient module Z(M)/Z(M) is -torsionfree. 

Proof. We must show that t(Z(M)/Z(M)) = 0. But t is a radical, hence t(Z(M)/Z(M)) = t(Z(M))/Z(M) which by (1), is 

equal to Z(M)/Z(M) = 0. 

Examples. 

(1) Any nonsingular module is -nonsingular. 

(2) Let R be a ring in which every -dense right ideal is essential. Then, for any R-module M, we have Z(M) 

={m  M | ann(m) ≤
e

 R} is just the -torsion submodule of M. In particular, M is -singular iff it is -torsion, 

and it is -nonsingular iff it is -torsionfree. Conversely, if every -torsion module is -singular then every 

-dense right ideal of R is essential. To see this, let I ≤
d

 R. So R/I is -torsion, and hence a -singular right 

R-module whose elements are annihilated by -essentail right ideals. In particular, ann(1+I) = I is 

(-)essential. 

(3) Let M  N be R-modules. If N is -nonsingular, so is M, and the converse is true if M ≤
e
 N. The first part 

follows from Proposition 2. For the converse, suppose that Z(M) = 0 and M ≤
e
 N. Then by Proposition 2, we 

have Z(N)  M = Z(M) = 0 and so Z(N) = 0. In particular, we see that M is -nonsingular iff its 

(-)injective envelope is -nonsingular. 

(4) An R-module M is -singular iff there exist R-modules A ≤
e

 B such that M ≅ B/A. This follows from the 

corresponding result on singular modules in p.247 of Lam (1998) and Proposition 3 above. 
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(5) Call a ring R right -split if every -dense right ideal is a direct summand. So R is right -split iff every 

R-module is -nonsingular. (In particular, a right -split ring is right -nonsingular.) To see this assume that 

R is -split and let m  Z(M), hence ann(m) ≤
e

 R implies that ann(m) = R, so m = 0. Conversely, suppose 

every R-module M is -nonsingular. For every -dense right ideal I of R, let J be a complement, so that I  J 

≤
e

 R. Then R/(IJ) is a -singular right module by example (4), and so IJ = R. Thus, every -dense right 

ideal is a direct summand. 

Examples of -nonsingular rings are given in the following: 

Remark. If R is a ring such that no maximal right ideal is -essential, then R is -nonsingular. 

Proof. Suppose Z(R)  0. Then there exists a non-zero element r  R such that ann(r) ≤
e

 R. Now 1  ann(r) hence 

ann(r) is contained in some maximal right ideal M which again must be -essential in R. A contradiction with the 

assumption. 

Proposition 4. Let R be a -nonsingular ring and P a projective R-module containing a finitely generated -essential 

submodule. Then P must be finitely generated. 

Proof. By the Dual Basis Lemma, there is a family {xi} of elements of P and a family {fi}  Hom(P,R) such that for 

x  P, x = xifi(x), where fi(x) = 0 for all but a finite number of i’s. Clearly, it is sufficient to show that fi is the zero 

map for all but finitely many i’s. Let B be a finitely generated -essential submodule of P with generators b1,…, bn, 

then the set A = {i | fi(bj)  0 for some 1 ≤ j ≤ n} is a finite subset of the indices and fi(B) = 0 if i  A. If x  P, then I 

= {r  R | xr  B} is a -essential right ideal of R and for i  A, 0  fi(xr) = fi(x)r for every r  I, so fi(x)  Z(R) = 0 

and the result follows. 

The next result gives examples of rings that fail to be -nonsingular. 

Proposition 5. Let x be a central nilpotent element in a ring R, such that ann(x) ≤
d

 R. Then x  Z(RR). 

Proof. To show that ann(x) ≤
e
 R, let y be any nonzero element in R. There exists a smallest n ≥ 0 such that x

n+1
y = 0. 

Then x
n
y  annr(x)\{0}. Since x

n
y = yx

n
, we have shown that ann(x) ≤

e
 R. 

The following result shows that M/Z(M) is τ-nonsingular provided that R is τ-nonsingular. 

Theorem 6. Let R be a right τ-nonsingular ring and M be any R-module. Then Zτ(M/Zτ(M)) = 0. 

Proof. We will show that Zτ(M/Zτ(M))  Z(M)/Zτ(M). Hence the result follows since a τ-torsion submodule of a 

τ-torsionfree module must be 0. So let m  M be such that m + Zτ(M)  Zτ(M/Zτ(M)). Then mI  Zτ(M) for some 

right ideal I ≤
τe

 R. To show that m  Z(M), we must show that ann(m) ≤
e
 R. Let J ≠ 0 be any right ideal in R. Fixing a 

nonzero element x  I  J, we have mx  mI  Zτ(M), so mxK = 0 for some right ideal K ≤
τe

 R. But xK ≠ 0, for 

otherwise x  Z(R)\{0}. Therefore xy  ann(m)  J. This shows that ann(m) ≤
e
 R, as desired. 

If R is not -nonsingular then M/Z(M) may not be -nonsingular. For an example where  is the improper torsion 

theory, see p.254 of Lam (1998). Recall that for any submodule of an R-module M, there is defined a module N
*
 as 

the (unique) submodule of M containing N such that N
*
/N = Z(M/N). Generalizing this, we give the following 

definition: 

Definition. Let N be any submodule of an R-module M, we define N’ to be the submodule of M containing N such 

that N’/N = Z(M/N). This process can be repeated, so we can define N’’, N’’’, and so on. 

Notice that N’/N, N’’/N, … etc. are always -torsion. It is clear that N’  N
*
 and 0’ is just Z(M). Moreover, we have 

                  N’ = {y  M | (N:y) ≤
e

 R}           ……..(2) 

               N’’ = {y  M | (N’:y) ≤
e

 R}, etc.          ……(3) 

Using (2), we see immediately that: 

Lemma 7. If L  N  M, then L’  N’. In particular, Z(M) = 0’  N’. 

Goldie (1964) proved that for any submodule N  M, the quotient M/N
**

 is nonsingular. Generalizing this, we will 

prove that M/N’’ is always -nonsingular. But before this, we need a generalization of the idea of essential extensions, 

also due to Goldie. We say that two submodules S, T  M are related (written S~T) if, for any submodule X  M, we 

have X  S  0 iff X  T  0. Clearly, "~" is an equivalence relation on the submodules of M. If S  T then S~T 
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simply gives S ≤
e
 T. 

Some basic properties of the equivalence relation "~" are given here. 

Proposition 8. Let L and N be submodules of a module M. Then: 

(i) N + 0’ ~ N’. 

(ii) N’~N’’. 

(iii) If L~N and L  N ≤
d

 L then L  N’. 

Proof. (i) We want to check that N + 0’ ≤
e
 N’. Let X be a submodule of N’ such that X (N+0’) = 0. For any x  X 

there is a right ideal I ≤
e

 R such that xI  N. Then xI  X  N = 0 implies that x  X  0’ = 0, and hence X = 0. 

(ii) Replacing N by N’ in (i), we get N’’~(N’+0’) = N’ (i.e. N’ ≤
e
 N’’). 

(iii) Since L~N then by p. 255 of Lam (1998), we have L  N
*
, i.e. (N:l) ≤

e 
R for any l  L. But (N:l) ={r  R | lr  N} 

= {r  R | lr  L  N} is a -essential right ideal in R since L  N ≤
d

 L. This shows that for any l  L, we have (N:l) 

≤
e

 R, hence l  N’. 

We are now ready to prove the generalization of Goldie’s Theorem: 

Theorem 9. For any submodule N  M, we have N’’’ = N’’. In other words M/N’’ is -nonsingular. 

Proof. Let N  N’. Replacing N by N’ in part (ii) of Proposition 8, we get N’’’~N’’~N’. Applying part (iii) with N 

replaced by N’, and L = N’’’ and noticing that N’  N’’’ = N’, hence N’’’/(N’  N’’’) = N’’’/N’ ≅ (N’’’/N)/(N’/N) is 

-torsion, we get N’’’  N’’, and hence N’’’ = N’’. 

Corollary. For any submodule N  M, the module N’’ has no -essential extension in M. 

Proof. Consider any submodule Y such that N’’ ≤
e

 Y ≤ M. Then by part (iii) of Proposition 8 we get Y~N’’ and Y  

N’’ = N’’ ≤
d

 Y imply that Y  N’’’ = N’’, so Y = N’’. 

Definition. For any submodule N  M, we write cl(N) := N’’, and call this the (Goldie) -closure of N in M. 

Note that in the special case when R is a right -nonsingular ring, cl(N) = N’ by Theorem 6. 

We now finish with some remarks about -nonsingular modules. If N  M where M is any module, then N need not 

be -essential in N’. For instance, (0) is not essential in 0’, unless M is -nonsingular. In case M is -nonsingular, the 

prime operation behaves in a much nicer way. We summarize the relevant facts in the proposition below. Note in 

particular that, in a -nonsingular module, the notions of Goldie -closure and -essential closure coincide. 

 

Proposition 10. Let M be a -nonsingular right R-module, and let N  M. Then:  

(a) N ≤
e

 N’.  

(b) N’ is the largest submodule of M with the properties that N’~N and N’  N ≤
d

 N’.  

(c) N’ is the smallest -essentially closed submodule of M containing N. (In particular, N’ is the -essential 

closure of N in M.)  

(d) N’’ = N’.  

(e) N = N’ iff N is -essentially closed in M.  

(f) If Ni is -essentially closed in M (i  I) then Ni is -essentially closed in M. 

Proof. Since 0’ = 0, part (i) of Proposition 8 gives N~N’, proving (a). If L~N and L  N ≤
d

 L, part (iii) of Proposition 

8 gives L  N’, proving (b). From Proposition 8 part (ii), we have N’’~N’~N so (b) shows that N’’ = N’, proving (d). 

To prove (e), first assume N = N’. Then N = N’’ is -essentially closed in M by Corollary of Theorem 9. Conversely, 

if N is -essentially closed in M, then (a) implies that N’ = N. To prove (c), note that N’ = N’’ is -essentially closed in 

M. Moreover, if N  X ≤
c

 M, then N’ = X’ = X by (e). For (f), let N = Ni. We have an injection M/N  M/Ni. 

Since Ni’ = Ni by (e), each M/Ni is -nonsingular. By part (v) of Proposition 2, we have M/Ni is -nonsingular, and 

by Proposition 2 part (iv), so is M/N. This means that N = N’, so by (e) again, N ≤
c

 M. 
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