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Abstract 
The number of photons and electrons are needed for the dose calculation of radiotherapy of cancer 

treatment. The number of photons are calculated employing the Boltzmann Transport equation (BTE) 

by direct calculation. But it is very difficult to solve directly the BTE for electrons as the mean free 

path of electrons is much smaller than the mean free path of photons. Thus, alternatively, one can 

solve the Fokker- Planck equation instead of BTE, which is an approximation of the BTE based on the 

fact that the scattering process for electrons are very forward-peaked. In this paper, we propose a new 

numerical scheme for a degenerate parabolic partial differential equation using finite difference 

method of final value problem.  

Keywords: Electron, Photon, Radiotherapy, forward-peaked, degenerate parabolic partial differential     

equation. 

 

1   Introduction 

 
Modern technology is considered by many to be one of the significant forces that drive the next major 

treatment revolution of the current century. In the present time, the high energy photon radiotherapy is 

very much useful for cancer treatment. For this reason it is most important to calculate the expected 

dose distribution, before starting the treatment of the patient, i.e. the distribution of absorbed radiative 

energy in the patient, has to be calculated. The major part for a treatment plan is the perfect dose 

calculation before beginning the treatment that should effect the real treatment as far as possible. 

When the dose of radiotherapy in the tumour tissue is not very low then it can be expected a curative 

effect. But when the dose is so high then the many healthy tissue surrounding the tumour will be 

destroyed or they will not be able to protect or avoid the undesirable side effect from the high dose.  

 

We can find the exact dose calculation for photon and electron radiation. By well known physical 

principles of interaction of radiation with human tissue, the transport of energy into the patient’s body 

can be modelled and calculated by an appropriate Monte Carlo (MC) algorithm [1]. If we work 

carefully then the results will be exact of the dose distribution in arbitrary geometries and nowadays 

highly developed MC codes for dose calculations are available but the computational time is very high 

in this case. 

 

So, day by day in clinical use of this process is going to be unattractive.  

 

The alternative approach to circumvent the drawback of the MC codes called kernel models [2] offers 

a reliable and fast alternative for most types of radiation treatment. The pencil beam models are 

probably most in use and these models are based on the Fermi-Eyges theory of radiative transfer [4] & 

[5]. The first introduce was for pure electron radiation [6] and later generalized to photon radiation [7] 

& [8], too. Although the result was good but the pencil beam models fail in complicated setting like air 

cavities or other inhomogeneities. This failure is based on the underlying Fermi-Eyges theory that 

assume, that multiple scattering only leads to small changes in the direction of the radiation. Because 

the theory was originally developed for astrophysical problems but it fails in human tissue by multiple 

scattering can lead to large angle changes even if every single scattering event in forward peaked. As a 

consequence of the small angle scattering the Fermi-Eyges theory that equals path length and depth of 
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the radiations particles approximately [5]. Because of this depth dependence of the physical 

parameters pencil-beam models can only account for layered heterogeneities that have to be 

approximated by a rescaling of the kernels [6].  

 

In the last few years, it is seen that the deterministic Boltzmann equation of radiative transfer which 

the third access to dose calculation, which is based on the physical interactions of radiation in tissue. A 

mathematical model can be developed that allows in principle an exact dose calculation like as MC 

models. The resent studies for pure electron radiation were mostly done by Borgers and Larsen [10]. 

Electron and combined photon and electron radiation were studied by Tervo et al [11], Tervo and 

Kolmonen [12] in the context of inverse therapy planning and by Zhengming et al [13] who restricted 

their model to one dimensional slab geometry.  

 

To the best knowledge of the authors, the solution of degenerate parabolic equation has not been 

analyzed numerically. The present study is focused only the numerical solution of degenerate 

parabolic equation employing Finite Difference Method. This degenerate equation has been taken from 

the Fokker-Planck approximation of the Boltzmann Transport equation for electrons. 

 

2 The Fokker-Planck Equation 

 
To find the exact dose calculation we need the number of electron which is found from the solution of 

the Fokker-Planck equation which is the approximation of the Boltzmann transport equation for 

electrons. In addition, the degenerate parabolic equation that is the important part of the Fokker-Planck 

approximation is presented here. 

The Fokker-Planck equation is [3] 

 

 
 

 

where L is the Laplace operator on the sphere which is given by 

 
where, Q is the Compton source term. 
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3 The Degenerate parabolic partial differential equation 

 
In this part, some notation for the Fokker-Planck equation (1) are used and discussed. A numerical 

scheme based on finite differences for this equation is presented here. We have tested the numerical 

scheme for an exact test. If we consider 

 
 

then equation (1) becomes 

 

 
To solve the equation (6), it is needed to select an appropriate method. For choosing the method, we 

take and solve some partial differential equations which are related to the equation (6). One of them is 

the following. 

 

 

 
 

 

 
Let, on the other hand, 

 
 

4  Numerical Scheme 

 
In this section, our numerical scheme is discussed in details. We look for a difference scheme of order 

one in t and order two in x. Regarding the x discretization, note that at the boundary of [-1, 1], the 

central difference formula cannot be used for the first order derivative with respect to x. So at -1, the 

forward difference formula for the first order derivative with respect to x is employed, while at 1 , the 

backward difference formula for the first order derivative with respect to x is used (see [19], page 
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207). For the interior nodes of [-1, 1], that is to say, for the nodes belonging to the open interval (-1, 

1), the appropriate central difference formula has been used. 

 

 Let nx be the number of nodes in [-1, 1] and nt - 1 be the number of  “time” steps covering [0, T]. The 

following notations are considered  

 

 
 For i = 1 
The numerical scheme of (7) 

 

 
Despite having explicit appearance, this is an implicit approximation because we are solving a final 

value problem. We use the following notations. 

 
 

 

Note that here 

 
 

Therefore we get from (12) 

 
 

which suggests the following numerical scheme. 

 
 

 
 

For i = 2 

 
The numerical scheme of (7) is 

 
Note that 
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Then we get from equation (18) 

 

 
 

 
Now we consider 

 

 
 

 

 
 

 

 
This is analogous to the case i = 2 

 
 

Note that here 
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Therefore we get from (25) 

 

 

 
 

 

For i = nx 
This is analogous to the case i = 1, 

 

 
 

Note that here 

 
 

So we get from (30) 

 

 

 
 

 

Equation (7), together with (9) is a final value problem, so we know the value of   
 
 when j = nt. Now 

we will find the value of    
 
 when j = nt – 1 (at t – T – k). 

 

When j = nt - 1 then we get from (20), (24) and (29) the following system of equations. 

 

1. For i = 2 
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and 

 

 

3. For i = nx - 1 

 
 

accordingly. 

We see from (35), (36) and (37) that the number of equations is nx -2. We know the value of    
   , for 

every i = 1, 2 ... , nx and the value of    
 
 for every i = 1, 2 ... , nx, j = 1, 2, ..., nt. therefore the right 

hand sides ot the three equations (35), (36) and (37) are known and the number of unknowns is nx-2 

also. So we can write equations (35), (36) and (37) in a square matrix form easily: 

 

 

 
 

 

We solve the equation (38) and find 

 
 

 

Again we get from (17) and (34) when j = nt – 1. 

 

1. For i = 1 
 

 
and 

 

 

2. For i = nx 
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4.1 Matlab code 
I have made a MATLAB code to solve the equation (7) with the Final value condition (9) that means 

to solve (38), (40) and (41). The code is made of 4 m-files. The name of those m-files are benchmark, 

Exact2, FM2 and data.  

1. In the benchmark m-file exact and approximate solutions are compared.  

2. In the data m-file we give the input data for the program. Here we use the following 

notations. 

(a) We use enx for the number of nodes in [x1, x2]. Where x1 is the lower limit and x2 is 

the upper limit of the range of x which is used in (7).  

(b) We use ent where ent-1 is the number of time steps covering [t1, t2]. Where t1 is the 

lower limit and t2 is the upper limit of the range of t use in (7) 

 

3. In Exact2 we put the exact solution u(t, x) for testing our Matlab code. 

 

4. In FM2 we put function M(t, x). For exact test function M(t, x) is computed with (7) for a 

given u(t, x). 

 

4.2 Numerical results 

 
The present numerical scheme and matlab code is validated with some examples. We test our Matlab 

code for three exact tests. Let u(t, x) be a given function and put this u(t, x) in (7) in order to find the 

function M(t, x). By using M(t, x) we can find an approximate value of  

u(tj , xi), where i = 1, 2, ..., nx and j = 1, 2, ..., nt   -1.  

 

by using our Matlab code. Also we can find the exact value of u(xi, tj) directly. We compare those two 

values of u(tj , xi) and give the difference of the two values which is the error. We compute the error by 

means of the infinite norm over the grid (tj , xi). 

 

1. We take u(t, x) = sin(t
2
 + x

3
) then we get by using (7) 

 

M(t, x) = 2(t + 3x - 6x
3
) cos(t

2
 + x

3
) - 9x

4
(1 - x

2
) sin(t

2
 + x

3
). (42) 

 

nx nt Error Time 
11 11 0.2180 0.04 sec. 

31 101 0.0426 0.08 sec. 

91 1001 0.0037 1.64 sec. 

271 10001 2.8624e-004 184 sec. 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.14, 2013 

 

46 

Table 1 

 

nx nt Error Time 
11 11 0.2634 0.03 sec. 

31 101 1.0244 0.08 sec. 

91 1001 0.0022 1.56 sec. 

271 10001 2.0290e-004 177 sec. 

Table 2 

 

Now we use this u(t, x) and M(t, x) in our Matlab code and find the error which we show in the table 

(1).  Numerical results show that 

        

                           error  O( t) + O(( x)
2
), (43) 

as expected. In here we see that if we reduce ten times the value of t and ten times the value of (

x)2 then the error will reduce approximate ten times. But for reducing ten times the value of ( x)2 

need to increase three times of nx approximately. Which we represent in the following tables. 

 

1. We see in the table nx = 11, 31, 91, 271 because x = h = 
     

    
 and also 

we use nt = 11, 101, 1001, 10001 because  t = k = 
     

    
.  

 

2. We take u(t, x) = t
2
 + x

3
 then we get by using (7) M(t, x) = 2t + 6x + 12x

3
.  (44) 

 

Now we use this u(t, x) and M(t, x) in our Matlab code and find the error which we show in the table 

(2). 

 

3. We take u(t, x) = sin(x
2
) then we get by using (7) 

M(t, x) = 4x
2
(x

2
 - 1) sin(x

2
) + 2(1 - 3x

2
) cos(x

2
).  (45) 

 

Now we use this u(t, x) and M(t, x) in our Matlab code and find the error which we show in the table 

(3). 

 

5 Conclusion 

 
The equation (7) contains a first order partial derivative with respect to t and a second order partial 

derivative with respect to x. Typically to solve this kind 

 

nx nt Error Time 

11 11 0.1162 0.05 sec. 

31 101 0.0152 0.08 sec. 

91 1001 0.0011 1053 sec. 

271 10001 8.4993e-005 177 sec. 

 

Table 3 

of equations, it is needed a final condition and two boundary conditions, one at x = -1 and other at x = 

1. However, this is a degenerate parabolic PDE, it is degenerate because here a(x) = 0 at the boundary 

of [-1, 1], and for this reason the boundary values are not needed here. Therefore for choosing an 

appropriate numerical scheme we cannot choose any numerical scheme which is used to solve heat 

equation. We choose a numerical scheme which takes into account that a(x) = 0 at the boundary. As in 

the case of the heat equation, implicit schemes give better result than explicit ones. In this paper we 

present a numerical scheme of a degenerate parabolic partial differential equation which has been 

taken from the Fokker-Planck equation. Which may help to calculate the number of photons and 
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electrons for the dose calculation of radiotherapy of cancer treatment. Also, some examples are shown 

for proving the trueness of our MATLAB CODE in this paper. 

 

6 Appendix 

The coefficients are defined according to Pomraning [9]. Here   
  and    indicate the energy of 

outgoing particle and incoming particle respectively. 

 

6.1 Differential cross section for Møller scattering of primary electrons, i.e., 

. 
Literature.[14] and [15]. 

 
 

 

 

 

with 

 

 
 

6.2 Differential cross section for Møller scattering of secondary electrons, i.e., 

 
 

Literature.[14] and [15]. 

 
with 

 

 
 

6.3 Differential cross section for Mott scattering of electrons 
Literature. [16] and [17]. 

α  1/137 is the fine structure constant, Z is the atomic number of the irradiate medium. Z depends 

on r to account for heterogeneous media. 
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with     
        

      
.  The last approximation is justified, because in the energy range studied here and 

for typical low-Z media like water only small errors are made. 

 To avoid the singularity at       a screening parameter   can be introduced (see [18]) that models 

the screening effect of the electron and the atomic shell. 

 

 
where 

 
 

6.4 The Møller coefficient  TM 

Since the secondary (outgoing) electron has the lower energy         
  

     

 
, 

energy is restricted to [ 
     

     
 

]: 

 

 
Using the definition (see equations 46, 47 and 48) of the M ller scattering cross section one gets 

 
 

This integral can in principle be calculated analytically. 

 

6.5 The Mott coefficient TMott  
 

 
The angular integration can be done analytically and one gets 
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Insted of using the definition of Pomraning (1992) it is convenient to use the standard definition of the 

stopping power. 

 
 

Of course both definitions are equivalent. 

 

 

This integral can be evaluated analytically, too, and one gets 
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