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Abstract 

The uniqueness of Fibonacci sequence is been discussed with particular emphasis on its application to random 

number generation. The Lehmer’s algorithm was employed using fibonacci prime. For multiplier 912a , initial seed

4150 x , modulus 28657m and multiplier 518a , initial seed 2110 x , modulus 514229m , we generate random 

numbers with full period  1m . This suggest that higher values of Fibonacci primes with appropriate choice of a full 

multiplier a , modulus m (fibonacci prime) and a starting seed 0x  will produce a full period with finite countable 

many random numbers. A run test also indicates that the random numbers generated using modulus m as fibonacci 

prime are truly random 

Keywords: Fibonacci sequence, Fibonacci prime, Random numbers generator, Lehmer’s Algorithm, run test 

 

1. Introduction 

The design of nature has been discovered to have underlying mathematical formulation and numerical 

representations. One such numerical representation found in nature is Fibonacci numbers (Adam, 2006). The 

Fibonacci numbers are sequence of numbers generated by summing the first two numbers in the sequence to get the 

next. It is a deceptively simple series of numbers but it ramifications and applications are nearly limitless (Livio, 

2002; Conway and Guy, 1996). The Fibonacci sequence is of interest to non-mathematicians primarily because of the 

possibility of using them to investigate a wide variety of problems. These numbers are researched in the area of 

number theory, games theory and sequence and it has continued to attract interest among mathematicians to the 

extent that a quarterly journal is dedicated to Fibonacci series (Hilton & Pedersen, 1994; Matthew & Fink, 2004).  

 

A random number is a number generated by a process which outcome is unpredictable and which cannot be 

subsequently reliably reproduced. This definition works fine provided that one has some kind of black box, such a 

black box is usually called random number generator that fulfil the required task. (von Neumann, 1951) 

Consequently, a random number can also be defined as a number chosen by chance from some specified distribution 

such that selection of a large set of these numbers produces the underlying statistical distribution. Almost always 

such numbers are also required to be independent, so that there are no correlations between successive members. The 

output can be converted to random variate via mathematical transformations 

 

Historically there are two types of random numbers generators: computer generators (also called True random 

number generator (TRNG) and algorithmic generators (also called Pseudo-random numbers generator (PRNG)). 

Pseudo random number generators are algorithm that uses mathematical formulae or simply pre-calculated table to 
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produce sequence of number that appear random. A good deal of research has gone into pseudo random number 

theory and modern algorithms for generating pseudo random number and it makes it so good that the number look 

exactly like they were really random (Knuth, 1997). A good example of pseudo random number generators is the 

linear congruential method. A linear congruential generator is a method of generating a sequence of numbers that are 

not actually random but share many properties with complete random numbers. (Neave, 1973 ;Ferguson, 1960). 

 

Pseudo-random numbers generators are widely accepted because they meet the following criteria: randomness: It 

produces output passes all reasonable statistical tests of randomness; controllability: able to reproduce random 

stream of output, if desired; portability: able to produce the same output on a wide variety of computer systems 

efficiency: fast, minimal computer resource requirements and documentation: theoretically analysed and 

extensively tested. When used without qualification the word random usually means random with a uniform 

distribution, other distribution are of course possible. For example the box-miller transformation allows pairs of 

uniform random numbers to be transformed to the corresponding random numbers having a two dimensional 

distribution. It is impossible to produce an arbitrary long string of digits and prove that it is random. When generating 

random numbers over some specified boundary, it is often necessary to normalize the distribution so that all 

differential areas are equally computed (Bassein, 1996). 

 

True random number generators (TRNG) extract randomness from physical phenomenon and introduce it into the 

computer. The physical phenomenon can be very simple like the little variations in the movement of a mouse or in 

the amount of time between key strokes. Regardless of which physical phenomenon that is used, the process of 

generating true random number involves identifying little unpredictable changes in the real life data. 

 

2. An Overview of Lehmer’s Algorithms 

Using the note of Leemis and Park, (2006) and Shorey and Stewart, (1981) we present some basic concepts on 

Lehmer’s algorithm. Lehmer’s algorithm for random number generation is defined in terms of two fixed parameters: 

modulus 𝒎, a fixed large prime integer and multiplier 𝒂, a fixed integer in 𝑋𝑚  

 

The integer sequence 𝑥0, 𝑥1, ⋯ is defined by the iterative equation 𝑥 𝑖+1 =  𝑔(𝑥𝑖)  

with 𝑔(𝑥𝑖  )  =  𝑎𝑥𝑖  𝑚𝑜𝑑 𝑚  

𝑥0 𝜖 𝑋𝑚 is called the initial seed 

We have that 0 ≤  𝑔(𝑥𝑖  )  <  𝑚 because of the mod operator. 

However, 0 must not occur since 𝑔(0)  =  0  

Since m is prime, 𝑔(𝑥) ≠  0 if 𝑥 𝜖 𝑋𝑚.  

If  𝑥0𝜖 𝑋𝑚, then 𝑥𝑖𝜖 𝑋𝑚 for all 𝑖 ≥  0.  

 

Note: The quality of Pseudo-Random numbers generated depends on a good choice of 𝒂 (multiplier) and 𝒎 

(modulus). The following observations are important: 

 𝑎 is a fixed (constant) integer in 𝑋𝑚 also known as multiplier 
  

 

 𝑚 is a large fixed prime integer also known as the modulus 

 𝑥0 is the initial starting seed in 𝑋𝑚 
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 The Mod function ensures a value less than 𝑚 is always generated, 

 𝑚 (Modulus) is chosen to be a prime number so that a non-zero remainder always exist, that is 𝑥𝑖 is never 0. If 𝑥𝑖 

becomes 0, then all subsequent 𝑥𝑖 will be zero 

2.1 The Modulus and Multiplier Selection 

Here we discuss how to select a suitable modulus and multiplier that can generate the desired random numbers. 

When selecting a modulus or multiplier, the following outlined rules must be noted: 

(i). The modulus 𝑚 should be very large as possible (  1    is a good value for modulus 𝑚). 

(ii). The modulus must be a prime number in other to avoid the occurrence of zero which subsequently causes 𝑥𝑖 to be 

zero. 

(iii). The multiplier 𝑎 should be chosen to guarantee a full period multiplier. 

 

Theorem 1 

If the sequence 𝑥0, 𝑥1, 𝑥2, ⋯ is a produce by Lehmer’s generator with multiplier 𝑎 and modulus 𝑚  

then 𝑥𝑖 = 𝑎
𝑖𝑥0mod 𝑚 

 

Proof 

We know that 𝑏 mod 𝑎 = 𝑏  [𝑏 𝑎⁄ ]𝑎, then there exist a non-negative integer  𝑐𝑖 = [
𝑎𝑥𝑖

𝑚⁄ ] such that 

𝑥𝑖+1 = 𝑔(𝑥𝑖) = 𝑎𝑥𝑖mod 𝑚 = 𝑎𝑥𝑖  𝑚𝑐𝑖  

Therefore (by induction), we have that  

𝑥1 = 𝑎𝑥0  𝑚𝑐0 

𝑥2 = 𝑎𝑥1  𝑚𝑐1 = 𝑎
2𝑥0  𝑚(𝑎𝑐0 + 𝑐1) 

𝑥 = 𝑎𝑥2  𝑚𝑐2 = 𝑎
 𝑥0  𝑚(𝑎

2𝑐0 + 𝑎𝑐1 + 𝑐2) 

⋮ ⋮  ⋮ 

𝑥𝑖 = 𝑎𝑥𝑖−1  𝑚𝑐𝑖−1 = 𝑎
𝑖𝑥0  𝑚(𝑎

𝑖−1𝑐0 + 𝑎
𝑖−2𝑐1 +⋯+ 𝑐𝑖+1) 

since 𝑥𝑖 ∈ 𝜒𝑚, we have that 𝑥𝑖 = 𝑥𝑖mod 𝑚 

Therefore letting 𝑐 = 𝑎𝑖−1𝑐0 + 𝑎
𝑖−2𝑐1 +⋯+ 𝑐𝑖+1, we have that 

𝑥𝑖 = 𝑎
𝑖𝑥0  𝑚𝑐 = (𝑎

𝑖𝑥0  𝑚𝑐)mod 𝑚 = 𝑎𝑖𝑥0mod 𝑚 

Hence 𝑥𝑖 = 𝑎
𝑖𝑥0mod 𝑚 

Note: We do not compute 𝑥𝑖 by first computing 𝑎𝑖, this is a wrong approach. 

The result of Theorem 1 has a significant theoretical value. 

 

2.2 The Period of the Sequence 

Consider sequence produced by 𝑥𝑖+1 = 𝑎 ∙ 𝑥𝑖mod 𝑚, once a value is repeated, all the sequence is then repeated. That 

is the sequence: 𝑥0, 𝑥1, 𝑥2, ⋯, 𝑥𝑖 , ⋯ , 𝑥𝑖+𝑝  where 𝑥𝑖 = 𝑥𝑖+𝑝. 𝑝 is the period, that is the number of elements before 

the first repeat. Clearly we see that 𝑝 ≤  𝑚    

It can be shown, that if we pick any initial seed x0, we are guaranteed this initial seed will reappear. 
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Theorem 2 

If  𝑥0 ∈ 𝜒𝑚  and the sequence 𝑥0, 𝑥1, 𝑥2, ⋯  is produced by the Lehmer’s generator 𝑥𝑖+1 = 𝑎 ∙ 𝑥𝑖mod 𝑚                     

with multiplier 𝑎 and (prime) modulus m, then there exist a positive integer 𝑝 with 𝑝 ≤ 𝑚    such that:                        

(i). 𝑥0, 𝑥1, ⋯,𝑥𝑝−1  are all different  and  

(ii). 𝑥𝑖+𝑝 = 𝑥𝑖 ,      𝑖 = 0,  ,  ,⋯ 

 

Proof 

We know from modulo arithmetic that  

(𝑏1. 𝑏2…𝑏𝑛)mod 𝑎 = (𝑏1. mod a)(𝑏2. mod a)… (𝑏𝑛 . mod a) 

Therefore 𝑥𝑖 = 𝑎
𝑖 ∙ 𝑥0mod 𝑚 = (𝑎𝑖mod 𝑚)𝑥0mod 𝑚 

From Fermat’s Little theorem, which states that if 𝑝 is a prime which does not divides 𝑎, then  

𝑎𝑝−1mod 𝑝 =        … … … … (*.1) 

Then 𝑥𝑚−1=(𝑎𝑚−1mod 𝑚)𝑥0mod 𝑚 = 𝑥0    … … … … (*.*) 

From (*.*), we have a more defined generalization, thus 𝑥𝑖+𝑝=(𝑎𝑖+𝑝mod 𝑝)𝑥𝑖mod 𝑚 = 𝑥𝑖 

⟹ 𝑥𝑖+𝑝= 𝑥𝑖 Hence the proof 

Note:  

1. Ideally, the generator cycles through all values in 𝜒𝑚 to maximize the number of possible values that are 

generated, and guarantee any number can be produced. 

2. The sequence containing all possible numbers is called a full-period sequence (𝑝 =  𝑚   ). 

3. Non-full period sequences effectively partition 𝜒𝑚 into disjoint sets, each set has a particular period (not full 

period). 

2.3 Determining if 𝒂 is a full period Multiplier  

We present the following Algorithm for finding if p is a full period. 

p = 1; 

x = a;   // assume, initial seed is  x0 =  , thus 𝑥1 = 𝑎 

Do 

 𝑥=(𝑎 ∗ 𝑥)mod 𝑚  {// cycle through numbers until repeat//}  

 𝑝 = 𝑝 +    {careful: overflow possible} 

Until  𝑥 = 𝑥0 

If  𝑝 = 𝑚    

 Writeln (𝑎 is a full period multiplier) 

Else  

Writeln (𝑎 is not a full period multiplier) 

End if 

 

3. Numerical Experiments 

The following numerical experiments show how random numbers are generated using Lehmer’s algorithm of the 

formula 𝑥𝑖+1=𝑎 ∗ 𝑥𝑖mod 𝑚 , considering the multiplier 𝑎 , the modulus 𝑚  and the initial seed 𝑥0 . In each 

experiment we generate values for 𝑥0, 𝑥1, 𝑥2, ⋯ , 𝑥𝑖 , 𝑥𝑖+1 after making a choice of fibonacci prime as our values for 

𝑚 
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Experiment 1 (𝑚 =  8657, 𝑎 = 9  , 𝑥0 = 4 5) – Five digit fibonacci prime (𝑚) 

Experiment 2 (𝑚 = 5 4  9, 𝑎 = 5 8, 𝑥0 =    ) – Six digit fibonacci prime (𝑚) 

The two numerical experiment above produce a full period sequence since 𝑝 =   8657 (first experiment) and 

𝑝 =  5 4  9 (second experiment) therefore 𝑎 =  9   and 𝑎 =  5 8 are full period multiplier respectively. 

 

3.1 Tests for Randomness 

We apply the run test to test the null hypothesis that randomness does not exist in the number generated. Consider a 

sequence of numbers made up of two set, 𝑐 and 𝑑, where 𝑐 represent the corresponding random numbers generated 

when it is less than the average and 𝑑 represent the corresponding random numbers generated when it is greater 

than the average. 

Suppose we form all possible sequences consisting of 𝑁1𝑐′s and 𝑁2𝑑′s, for 𝑁1 + 𝑁2 = 𝑁 and 𝑉 is the total 

number of runs, then by using the formula 

𝜇𝑣 =
2𝑁1𝑁2

𝑁1+𝑁2
+       … … … … (1) 

𝛿𝑣
2 =

2𝑁1𝑁2(2𝑁1𝑁2−𝑁1−𝑁2)

(𝑁1+𝑁2)
2(𝑁1+𝑁2−1)

    … … … … (2) 

When 𝑁 is relatively large (>20) the distribution of 𝑉 is approximately normal and thus 

𝑍 =
𝑉−𝜇𝑣

𝛿𝑣
  ~ 𝑁(0,  )     … … … … (3) 

We can test the null hypothesis at the appropriate level of significance using equation (3) 

We have that for the first experiment 

𝑁1 =  43 9, 𝑁2 =  43 8, 𝑁 =  8657, 𝑉 =  4448.9 

We have that  𝜇𝑣 =  43 9.5 and 𝛿𝑣 = 84.6404  and 𝑍𝑐𝑎𝑙 =  .4 076, 𝑍𝑇𝑎𝑏𝑙𝑒 =  .96, for 𝛼 = 0.05 level of 

significance. 

Therefore we reject the null hypothesis and conclude that randomness exist in the random numbers generated since 

𝑍𝑐𝑎𝑙(Test statistics) < 𝑍𝑇𝑎𝑏𝑙𝑒  (Critical value) 

Using the same approach above, for the second experiment we test for the null hypothesis and conclude that 

randomness exist in the sets of random number generated. 

 

4 Results and Discussion 

 

From the result of this work, we have shown that a five and six digit fibonacci prime with appropriate choice of full 

multiplier 𝑎,  modulus 𝑚 (fibonacci prime) and a starting seed 𝑥0 will produce a full period. Table 1 shows the 

first 600 random numbers generated from the 28, 657 that was generated and Table 2 shows the first 570 random 

numbers generated from the 514, 229 that was generated.  A full period guarantees randomness and a longer length 

of random numbers sets. The longer the digit of the fibonacci prime, the better and more random the numbers 

generated will be. Further research should be able to show clearly that not all fibonacci prime will generates a full 

period no matter the choice of full multiplier 𝑎,  and a starting seed 𝑥0. 
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Conclusion 

The uniqueness of Fibonacci sequence is been discussed with particular emphasis on its application to random 

number generation. The Lehmer’s algorithm was employed using Fibonacci prime on a 32 bit machine. Two set of 

numerical experiments were carried out using a five and six digits fibonacci prime. Both experiments produce large 

sets of random numbers with full periods. Higher digits fibonacci primes could be studies for randomness and 

implementation. We suggest that further research be made to devise algorithms that help in finding the appropriate 

choice of full multiplier 𝑎,  modulus 𝑚 (fibonacci prime) and a starting seed 𝑥0 that will produce a full period. 
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