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ABSTRACT 

In this research two methods were used to compute survival time of a cohort of 84 dogs with rabies. In carrying out 

Kaplan-Meier analysis, euthanasia was equated with death. Death (including subjects) recorded were treated as 

occurring prior to the exact time they occurred while censored (subjects lost to follow-up) were treated as occurring 

later than they time they actually occurred. Survival probability estimates and variance were calculated. In Markov 

process method, a 5 state time homogeneous Markov chain was used, the fundamental matrix which was obtained  

by summing counts recorded based on the number of dogs making respective transition was used to obtain 

probability matrix. The N matrix was calculated as well as its variance. The variances of the two methods computed 

served as a basis for comparing the efficiency of the two methods. Hence, the Kaplan-Meier product limit estimation 

with the smaller variance is more efficient in estimating survival time 
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Introduction 

The Kaplan-Meier estimator is named after Edward L. Kaplan and Paul Meier. It dates back to 1952 when Paul 

Meier at John Hopkins University (now University of Chicago) stumbled on Green wood’s paper on the duration of 

cancer. Since then many researchers have brought forward different ideas that has made the Kaplan-Meier estimator 

what it is today. Hillis et al (1986) defined Kaplan-Meier product limit model of survival analysis as a simple 

stochastic process that is defined by a set of transition matrices that contain probabilities of transition from state 

(alive) to state (dead). Over the years investigators almost exclusively use Kaplan-Meier product limit estimation for 

evaluation of time-event data;  Thompson and Fugent (1992) ,Al-sarraf et al. (1996), Khanna et al. (1998). 

Veterinary studies include a high frequency of euthanized subjects, sometimes over 50% of the total observations are 

from euthanized animals. Cox et al. (1991),  Berg et al. (1992),  Zwahlen et al. (1998). While death remains the 

outcome of primary interest in such studies, investigators are inconsistent in their attention to euthanasia. 

Investigators have ignored deleted, censored or simply equated with death any observation that terminates in 

euthanasia Al-sarraf et al. (1996), Khanna et al. (1998). Other investigators acknowledge that euthanasia posed an 

analytical problem ,Slater  et  al. (2001), staatz  et al. (2002). But choose to ignore the problem and equated 

euthanasia with death. 

An alternative strategy to describe and evaluate time event data is the use of Markov models.Markov models have 

been used to describe human disease processes such as the evaluation and description of diabetics, retinopathy, renal 

disease, papilloma virus and human immunodeficiency virus Hendriks et al. (1996), Markov models can be used to 

describe disease as a series of probable transitions between health states. This methodology has considerate appeal 

for use in veterinary clinical studies since it offers a method to evaluate multiple health states simultaneously. In 

addition it potentially offers a method to accommodate observations from euthanized animals by recognizing 

euthanasia as a concurrent outcome of interest. In this work interest is in comparing Kaplan-Meier product Limit 

estimation and markov process in estimating survival time of a cohort of Dogs with rabies. 

 

2. MATERIALS AND METHODS  

2.1  Introduction 

Kaplan-Meier survival analysis also known as the Kaplan-Meier product limit estimate can be used to estimate 

survival. The Kaplan-Meier method involves tracking the fates of individuals over time and estimating how long it 
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takes for death to occur. This method has been applied broadly to measure how long it takes for any specific event to 

occur; such as the time until a cancer patient recovers from a treatment, the time until an infection appears, the time 

until pollination occurs, and so on. The Kaplan-Meier method is conceptually similar to life tables calculations 

because you keep track of the number of individuals active and the number of deaths that occur over intervals of 

time. Specifically, you count the number of individuals who die at a certain time and divide that number by the 

number of individuals that are “at risk” (alive and part of the study) at that time. 

In this research two methods were used to compute survival time of a cohort of 84 dogs with rabies. The data used 

for the study was got from Kolay’s veterinary services located at No.14 Barracks Road Calabar, Cross River State 

(Southern Nigeria), Nigeria. 

 

 

2.2 Kaplan-Meier Product Limit Formula 

Let t1, t2, t3 ………… denoted the actual times of death of the individuals in the cohort. Also let d1,d2,d3,……… 

denote the number of deaths that occur at each of  these times, and let n1, n2, n3…….. be the corresponding number 

of patients remaining in the cohort.  

Note that n2 = n1 –d1 ………………………………………………………  ….  (1) 

 n3=n2-d2, etc…………………………………………………………………… (2) 

Then, loosely speaking,  

S(t2)= P(T>t2)= “probability of surviving beyond time t2”………………   …... (3)  

depends conditionally on,  

S(t1)= P (T>t1)= “probability beyond time t1” ……………………………… .   (4) 

Likewise, 

S(t3)=P(T>t3)=“probability of surviving beyond time t3”……………………     (5) 

depends conditionally on,  

S(t2)=P(T>t2)=“probability of surviving beyond time t2” etc………………    …(6) 

By using this recursive idea, we can iteratively build a numerical estimate Ŝ(t) of the true survival function  S(t). 

Specifically; for any time T(o,t1) we have  

S(t)= P(T>t)= “probability of surviving beyond time t” = 1,…………………… (7) 

Because no deaths have yet occurred. Therefore, for all t in this interval, let 

Ŝ(t)=1……………………………………………………………………………. (8) 

We know from elementary probability that P(A and B) = P(A) x P(B/A)……     (9) 

Let A= “survive from time t1” and B= “survive from time t1” to beyond some time t before t2”. Having both events 

occurs is therefore equivalent to the event “A and B”= “survive to beyond time t before t2” ie “T>t”. Hence, the 

following holds; 

 

 

(i) For ant time T(t1,t2), we have;  

     S(t) = P(T>t) = P[survive in (o,t1)] x P[survive in (t1,t) / survive in (o,t1)]  

 i.e Ŝ(t)                =         1                  
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     Ŝ (t)              =      1- d1                                                                                    (10) 

Similarly, for ant time t(t2, t3), we have ; 
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In general, for  t[tj, tj +1], j= 1,2,3…………,we have ; 
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The Kaplan-Meier estimator Ŝ(t) can be regarded as a point estimate of the survival function S(t) at any time t. In 

order to calculate the variance of the Kaplan-Meier product limit estimator, the Greenwood’s formula is used and is 

given by  

var [S(t)] = Ŝ
2
(t) =

 


tt iii

i

t
dnn

d
                                                                           (13) 

 

where ni is the number of subjects at risk at the beginning of the period ti 

di is the number of subjects who die during the time period ti Greenwood (1926). 

 

2.3  Markov Modelling And Analysis 

Matrix solution provides an exact solution of the time spent in each state conditional on the entry state in which an 

individual enters the model. Matrix solution is restricted to time homogeneous Markov chain. The transition 

probability matrix of a chain that contains absorbing states is divided into four sections. Q contains transition 

probabilities between transient states; R contains transition probabilities from transient to absorbing states; O is a 

zero matrix, and I is an identity matrix Brown and Brown (1990a). 

                                                           To 

          Table 1 

        

          Transient state   

 

 

From 

            Absorbing state 

 

 

 

The average number of cycles that a subject resides in transient state before absorption, given a specified starting 

state is estimated from the fundamental matrix (N). Calculating N is the inverse of the transient probabilities in Q 

Brown and Brown (1990b). The N matrix specifies the average number of cycles that a subject reside in transient 

state such that N= (1-Q)
-1

 where 1 is identify matrix and Q is the square matrix of the transient probabilities within P. 

multiplication of the number of cycles by the length of the cycle gives the expected duration in each state  

conditional on a starting state. The sum of these durations gives an estimate of expected survival conditional on a 

starting state  Beck and Pauker (1983). 

Theorem: If survival is considered as a two state Markov chain, and P is the probability of death, 1-P is the 

probability of surviving during the cycle. Than the variance of the N matrix with more than two states is V(N)= N(2  

N-1) –N
2
 

Q    R  

      

       

O    I  

     

Transient state Absorbing state 
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Proof: If P is the probability of death and 1-P is the probability of surviving during that cycle. The transition matrix 

is 






 

10

1 pp
. 

Since survival is the waiting time for the first occurrence of death, the number of cycles that a subject survives can 

follow a geometric distribution (Hogg and Craig 1978).  

 For geometric distribution; P(surviving X cycles = X;p) = P(1-P)
x-1

 

       where 1,2,3,4…… 
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Since the expected survival time (time to death) is given by the inverse of the probability of death, this can be likened 

to taking the  Q matrix to determine the N matrix Beck and Pauker (1983). 

If N =
p

1
, then 

Var(N) = N
2
 (2-N

-1
) –N

2
 

     = N(2N-1) –N
2 

 

3.  Results And Discussion 

In the context of the Kaplan-Meier procedure, euthanasia is equated with death and the subjects who become 

unreliable are spoken of as being censored, these are subjects which were lost to follow-up before the end of the 

study. It is impossible to know whether or not censored subjects survived or died hence omitting them from the 

analysis will amount to losing valuable information. We recognized that any attempt to salvage information from 

subjects which were lost to follow-up would involve a certain amount of “fudging”, hence, we proposed that subjects 

who became unavailable during a given time period can be counted among those who survive through the end of that 

period but then deleted from the number who are at risk for the next time period. That is, deaths recorded at time t are 

treated as if they occurred slightly before t and loss recorded as of time t are treated as occurring slightly after t. In 

this way fudging is kept conceptual, systematic and automatic. 

The table below shows a vivid explanation of the proposition  

Table 2 showing the Kaplan-Meier proposition 

Time of events 

(days) 

At risk Censored Died Survived 

6 84 1 5 79 

13 78 2 8 70 

21 68 1 13 55 

27 54 1 5 49 

32 48 1 2 46 

39 45 1 4 41 

43 40 0 3 37 

89 37 1 12 25 

92 24 1 3 21 
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 From table 2, 84 subjects (Dogs) who were at risk at the beginning of the study, 1 becomes unreliable (censored) 

during the first 6 days of the study, and 5 died. The number surviving the first 6 days is therefore 79 and the total 

number at risk after this period is 78. Another 2 subjects became unreliable (censored) during the next 7 days and 

other 8 died. Hence the number surviving the next seven days is 70 and the number at risk at the end of the period is 

68. The same applies for the other time periods shown. Next we calculate the survival probability estimates for each 

of the time periods. Apart from the first period the rest will be calculated as a compound conditional probability. 

Table 3 illustrates this. 

 

Table 3 showing computation of Kaplan-Meier survival probability estimate  Ŝ(t) 

Time of event 

(days) 

At risk 

(ni+1=ni-di-

ci) 

Censored  

    (ci) 

Died  

(di) 

Survival 

(ni+1-di) 

Survival probability               

ni+1-di 

Ni+1 

Kaplan-Meier    

probability estimate  

           Ŝ(t)                 

6 84 1 5 79 79/84 0.9405 

13 78 2 8 70 70/78 0.8440 

21 68 1 13 55 55/68 0.6826 

27 54 1 5 49 49/54 0.6194 

32 48 1 2 46 46/48 0.5936 

39 45 1 4 41 41/45 0.5408 

43 40 0 3 37 37/40 0.5002 

89 37 1 12 25 25/37 0.3380 

92 24 1 3 21 21/24 0.2958 

  

The above table (table 3) illustrate the logic of the procedure. The Kaplan-Meier product estimation using the 

formula given in section 2.2  is 0.0057 and variance of the Kaplan-Meier estimator also given in section 2.2 is 

0.0000010. 

In Markov modeling, the sum of the expected duration time spent in transient state before absorption is the expected 

survival of the cohorts of subjects. For the purpose of this study five health states were define as follows. 

 

Table 4 definition of health states to describe a cohort of Dogs with rabies 

State Definition Type 

WELL WELL TRANSIENT 

TOXIC TOXIC TRANSIENT 

LTF LOST TO FOLLOW UP ABSORBING 

DEAD DEAD ASORBING 

EUTH EUTHANIZED ABSORBING 

  

 Using the fundamental  matrix solution, for each cycle, a count was recorded based on the number of dogs making 

the respective transitions. The counts were summated to give the overall summation matrix (S) and the probability 

matrix was obtained thereafter. The two matrices are displayed below in table 5a and 5b 
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Table 5a Summation Matrix 

 TOXIC WELL EUTH DEATH LTF 

TOXIC 318 39 9 44 9 

WELL 8 61 0 2 0 

EUTH 0 0 0 0 0 

DEAD 0 0 0 0 0 

LTF 0 0 0 0 0 

      

 

Table 5b Probability Matrix 

 TOXIC WELL EUTH DEATH LTF 

TOXIC 0.7589 0.0931 0.0215 0.1050 0.0215 

WELL 0.1127 0.8592 0 0.0282 0 

EUTH 0 0 1 0 0 

DEAD 0 0 0 1 0 

LTF 0 0 0 0 1 

 

The variance of N matrix stated earlier in section 2.3 was 0.0269 

 

4. Conclusion 

From the result of the variances obtained, we see that the variance of Kaplan-Meier estimate (0.0000010) is less than 

the variance of N matrix (0.0269) this shows that Kaplan-Meier estimate with smaller variance is more efficient and 

a better estimator of the survival time. See, for example, Hogg and Craig (1978) on efficiency of estimators. Also, 

the Kaplan-Meier estimators provides estimates of survival time that can be partitioned according to the reason for 

loss and according to the health state of the animals, and data used has low concentration of censored and euthanized 

subjects. 
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