Analysis of Biomass Pyrolysis Product Yield Distribution in Thermally Thin Regime at Different Heating Rates

Pious O. Okekunle, Hirotatsu Watanabe, Ken Okazaki

Abstract


A better understanding of biomass pyrolysis process at various thermal regimes is fundamental to the optimization of biomass thermochemical conversion processes. In this research work, the behaviour of biomass pyrolysis in thermally thin regime was numerically investigated at different heating rates (1, 5, 10 and 20 K/s). A kinetic model, consisting of five ordinary differential equations, was used to simulate the pyrolysis process. The model equations were coupled and simultaneously solved by using fourth-order Runge-Kutta method. The concentrations of the biomass sample (Maple wood) and product species per time were simulated. Findings revealed that tar yield increased with increase in heating rate. Char yield, however, decreased with increase in heating rate. Results also showed that the extent of secondary reactions, which influenced gas yield concentration, is a function of residence time and temperature. This model can be adopted for any biomass material when the kinetic parameters of the material are known.

Keywords: Biomass, pyrolysis, kinetic model, thermally thin regime


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: MTM@iiste.org

ISSN (Paper)2224-5804 ISSN (Online)2225-0522

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org