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Abstract

We present a dataflow-oriented provenance systemafia fusion sensor networks. This model works Wik
net-works sensing dynamic objects and although ouesys# generic, we model it on a proximity binargsear
network.We introduce a network-level fault-tolerance medsianby using the cognitive strength of provenance
models. Ourprovenance model reduce the limitations of a séns@pability and decrease the error-prone
nature of wireless sersor networks. In addition provenance data is usedrder to efficiently build the
dynamic data fusion scenario atwadjust the network such as turning of some gsnda a fault-tolerant,
self-adjusting sensor network, sensor gataduce more accurate results and with the imprewsn tasks such
as target localization is more precisely done. Otieer aspect of our network is that by having cotation
nodes spread to the network, the computation i® doradistributed manner and as nodes make decisions
based on the provenance and fusion data avaithel@etwork has distributed intelligence.

Keywords. Multifusion, Wireless Sensor Networks, Open ProvexesModel

1 Introduction

This paper is targeted for building a dynamicatynfigured dataflow-oriented provenance system éal-time
andcontinuous monitoring data fusion sensor netwofknsors collaboratively carry out the sensing task
forward sensed data to the closest data processing céfaesever, it is not possible to record the data iitmy
snapshot othe network without provenance. Provenance makgsossible to have a clear picture of the
dataflow by trackinghe evolution of the data systematically. Besidasure recovery involves understanding
causal chains of events addtaflow model is a solid reference of the phasda does through (Cheney, et al.,
2009b). In this paper, provenanadl be used in order to find out causes of faldghavior, to figure out the
circumstances that will determine tbennectivity of the network, to produce trustwortlgta after elimination
of the causes. The possible errors and pawenance will be used to eliminate them is désctin Section 4.

To illustrate our concepts we examine a field afxmity binary sensors. In proximity-based wirelesnsor
networks,

the likelihood of the target position is calculategsing the binary values reported by proximity lbyjnaensors.
Thesensors should be able to tell that there arerdiets and depending on the density give a reasotwaation

of eachof them. A proximity sensor acts as a tripwire itgeports a detection when a target close bynig it.
Examples othese sensors are seismic, acoustic, passiveddfaand they can be deployed in large numbers becaus
of their low cost.The binary proximity behavior in sensors is achielbg implementing simple energy detection
algorithms where thsignal is compared to a threshold. If the signeéexs the threshold, the sensor node reports a
“1” meaning a detectiomtherwise a “0” is reported for no detection. Inmgotarget localization networks, in
case of no detection sensors dot report. A network of such sensors can be usetbdalize and track
targets(Qiang Le, 2010). Several papers lmen written about locating a moving intruder asest in Related
Part section. However locating k intruders is sdiiopen problem although there is ongoing resedtulr.
architecture and fusing algorithms can differeetitie k andocate them. Besides provenance data is captured in
our architecture as a support for the reliabilifytree algorithmsThe physical network contains sensors, fewer
computation nodes and a central node but thesetarspersed withithe sensor field.

This paper is organized as follows. In Section & ,describe the related work on provenance modetgmasor
networks.In section 3, we give some background. In Sectipdescribe our model. In Section 5, we list the
challenges we facembout this research. Section 6 concludes the paper.

2 Related Work

There is research done on target localization ims&eNetworks community. Hall and Llinas have akwvon
multi sensor data fusion applied to Department of DeféBsd) areas such as target recognition, battkbfiel
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surveillance(David Hall, 1997). Previous work was done on @ntgrget localization using proximity binary
sensors by several reearchers (A Artes-Rodriguez, 2004; Aslam, e28l03; Shrivastava, et al., 2006; Agostino
Capponi, 2006). Besidethere has been work done on multiple target loadbm where number of targets is
known(Qiang Le, 2010; Singlet al., 2007). However provenance information it used in these research, the
computations are based on solelyr#ry localization data reported by sensors. Tokoomiedge this is the first
work leveraging provenance data in talgetlization sensor networks.

Provenance has been studied in Sensor Network coityn&rovenance aware sensor data storage systems
pro- posed. In these systems, sensors collect proveriafarenation of the data they are sensoring or the
processes thegre running (Ledlie, et al., 2005). Furthermoregvpnance information associated with sensor
data has been used amswering domain specific complex queries (Pathgle 2010). Park and Heidemann
explore the need for data proveance in a sensor network to understand how predessults are derived and to
correct anomalies (Unkyu Park, 2008). addition, provenance-aware Open Provenance Mbdséd sensor
systems have been implemented in differentrdains (Liu, et al., 2010; Stephan, et al., 2010er€ has been
work presenting frameworks for provenance-aveamesor networks where data fusion methods are mgpited
(Liu, et al., 2009). However, to our knowledge tisighefirst work where fused nodes are grouped and sslect
based on an adaptive algorithm.

There has also been work done on provenance maeagémeScience community. Scientific workflow gyss

in-

clude myGrid/Taverna (Oinn, et al., 2004), KepBoyers & Ludascher, 2005), VisTrails (Freire, et 2aD06),
and Chimera (Foster, et al., 2002) etc. They automiticapture provenance during workflow creation and
execution tosupport reproducibility of scientific experimentusan B. Davidson, 2008). eScience research has
included some worlon sensor data access, analysis (Barseghian,,e20dl0) and provenance-based fault-
tolerance mechanisms (CrawlAtintas, 2008; Thomas Huining Feng, 2008).

The database community has also addressed the da$spvenance. Two types of provenance, data and
workflow provenance, are described as defined Section 3e@igiet al., 2008b) and data provenance research
has made a diginction between where, why and how provenance éan & Tan, 2007). There is also
extensive reseach in databasenmunity on query models and provenance storaglection (Moreau et al.,
2008b). There is also previous researnlilependency provenanaddressing the need for storing dependencies
(James Cheney, 2007).

3 Background
3.1 Provenance

Provenance is defined broadly as the origin, hjstohain of custody, derivation or process of afech In
otherdisciplines such as art, archeology, provenanceuisial to value an artifact as being authentic anginal.

In com-putational world, as all kinds of information caas@y be changed, provenance becomes an imporggnt w
of keepingtrack of alterations (Cheney, et al., 2009a). Althio data fusion systems will contribute to many
research fields byheir feasible characteristics, provenance managest®uld be also a concern in order to
have an understanding bbw results are obtained for later use such as faldrance, troubleshooting, result
reproduction and performanogtimization.

The literature generally divides provenance inttadand workflow provenance (Moreau et al., 2008bata
prove-nance gives a detailed record of the derivatioa pfece of data that is the result of a transfoionadtep
(Tan, 2007)whereas workflow provenance is the information atadata that characterizes the processing of
information frominput to output (Susan B. Davidson, 2008). Bottagabvenance and workflow provenance will
be the concern of thigaper and we will elaborate more on them in theroskctions.

3.2 Open Provenance M odel

Interest for provenance in eScience community @vgrg since provenance is crucial for scientificrikftow
systems tesupport reproducibility, reusability and maintaiilisp Against this backgroundFirst International
Provenance andAnnotation WorkshogIPAW’06) held in 2006 in Chicago. Researchers wbmmed the
conference wanted to knombout the other systems’ capabilities and expressss such as design principles,
representations, retrieval methogtrage choices. Hence, they agreed on organizingvant for sharing the
provenance approaches of different systand the idea ofFirst Provenance Challengeas born. At the end of
the Second Provenance Challenge, researdiecigled that there should be a standardizationhef viay
provenance modeled, stored, queried and changedkethe systems fully compatible with eachother. Foitayv
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this consensus, authors met in a workshop in 26@fted andterated a data model named as Open Provenance
Model. In the following paragraphs we will brieflyrite about théOpen Provenance Data Model’s specifications,
properties and design principles.

Open Provenance Model is based on three primaitjesrdefined below.

Definition 1 (Artifact) Immutable piece of state which may have a physcabodiment in a physical object ,

or adigital representation in a computer system. Theyepresented by circles.

Definition 2 (Process) Action or series of actions performed on or causgdartifacts and resulting in new
artifacts.They are represented as rectangles.

Definition 3 (Agent) Contextual entity acting as a catalyst of a pracesabling, facilitating, controlling, affecting

its

execution. They are represented as octagons.

Provenance of objects is modeled as a directediaay@aph (DAG) representing a past execution, neve
prediction offuture events. Dependencies are shown with edgesjge represent a causal dependency between its
source, denotinghe effect, and its destination, denoting the catlibere are five predefined causal relationships
used, wasGeneratedBwasTriggeredBy, wasDerivedFrom, wasControlledByl edges are labeled with one of
these causal relationships.

4 Overview

4.1 Sensor Network Model

There are two sensor network models used in theatiire. In the first model, all sensors get aaidgrom the
targetand the energy is added up and compared to a tide@iang Le, 2010). If the voltage is bigger thiha
thresholdthen the sensor reports a “1”. Whereas in the att@idel sensors report a “1” if there is a target in
their disc aregSingh et al., 2007). We use the second model imetwork. We believe that fusion idea works
better with the seconghodel; because data fusion nodes will be fusingdtita coming from nearby nodes, it is
more efficient if sensorgo red(detecting, hot) if the intruder is in theadarea. In the first model, there may be
faulty reports if many smadimounts of energy add up and exceed the threshold.

In our model rather than getting all data sent toeatral station, we have many computation nodesgdo
fusion and necessary computations that are specific tb patwork. It is a triggered system, at specifin€i
intervals data icollected and data fusion and computations are doedistributed manner. In our example
network, the computationsill be related to target localization. We have digributed approach.

4.2 Dataflow ProvenanceM odel

The ideal provenance model should contain sufftcieformation to be able to recreate an exact ceptif any
object(Muniswamy-Reddy, 2010). In this paper, we are agrfor this kind of model. If the provenance ofalat
fusion processs available, cognitive decisions can be made byst#nsors using the provenance information. For
example in a case

that a data fusing node is waiting for informatiooming from another node but that node fails todstre
informationand the waiting sensor times out, the sensor wiletthe information of other possible sensors that
might have thesame kind of information it is waiting for. Thisrk of behavior is supported by dataflow
provenance model. Hence aur system we will use a dataflow model based oerOprovenance Model. This
model tracks how information flonfsom one object to another (Andrei Sabelfeld, 200&)th this model we
have a snapshot of the network at spedifite intervals which we can refer to do some cosiolus such as
regrouping the fused sensor nodes, omitting a sewste, changing the dataflow scenario. Dataflow rhizdihe
right model because data and control dependenniétha dataflow path is efficiently captured in thisadel as
described in the paragraphs below.

Open Provenance Model has become a standard inlingpgeovenance as described in Section 3. Dataflow
Prove-nance Model is described in the literature base®pen Provenance Model (Muniswamy-Reddy, 2010).
Nodes repfesent objects, edges represent information flobwéden the source object and the destination object
as illustrated irFigure 1. Source object is treated as the anceétire destination object (Muniswamy-Reddy,
2010). Open Provarance Model of a sensor network is illustratedigufe 4, Figure 5, Figure 6, Figure 7 and
Figure 8.

Provenance answers questions such as “how wasbiket @reated”, “on what other objects does thieab
depend”,

“how do the ancestries of these two objects difdftiniswamy-Reddy, 2010). In our data fusion syst&mion
sen-sors will have the provenance information of “onatviother sensors does the fused data depend” &nd th
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provenancenformation will be used in analyzing data fusidowf graphs of sensor networks for the responsible
nodes in case daulty behavior. This kind of provenance informatis referred as data dependency (Crawl &
Altintas, 2008). Twaservices connected by a dependency characterizgsebedence order between them. Data
dependencies are categzed as value-dependency and control dependerneyw(@ Altintas, 2008). A value
dependency occurs when outplatta’s value depends on the value of previouslg dzda. A control dependency
occurs when arrival of the data causbks actor to execute but it is not used. In our ehotle have value
dependencies stored as provenance data. An exalealue dependency iBusing node C depends on data
coming from node Aas shown in Figure 2. In this casg@eration of fusing node C depends availabilityhef
data provided by A. Another example illustratedrigure 2 is“Fusing node C depends on data coming from
node A and node B”

For example in our system data dependencies aremance information and they are defined as follbwe
“Computa-tion Node A depends on Sensor Node 1, Node 2 a3 “Computation Node B depends on
Sensor Node 3, Nodeand Node 5”

4.2.1 What-if Analysis

We also have control dependencies in our modeltr@loftow refers to branching, iteration and jumginia if-
then-else, switch-case and while loops. Adding contmVfto dataflow model strengthens the power of wekvin
terms oferror-recovery, robustness and fault-tolerance @syet al., 2006). Control flow structure will pel
sensor networkn making cognitive decisions in case of a failuke.example scenario where control flow will be
useful is as followsWhen a computation node is not receiving correct sufficient input from the nodes it is
data dependent, it shoutdke an action to find a correct result. One pdssilotion can be asking to another
fusing node. This behavior can mplemented by a control flow statement such aghi#f incoming edges do
not send reliable data then ask to fusiogle X".

There is also what-if analysis available in outeysusing the historical data stored in the CemMiade. Mining
thedata, it can be found out how the network will i@sgif the target moves along a specific path.

OO0

VDiNodeA, Nodeb

Figure 1: node C depends on value coming from ide

OO o] ©
>

WD:NodeA, NodeB

Figure 2: node C depends on value coming both firode B and node A

4.3 ProvenanceGathering

Our system will support provenance from its initigsign. This method is called observed provenéideppe,
2010).Provenance data is automatically gathered withepedding on user input. In this type of provenance
collection, anadministrator can specify some parameters to theitoring process but cannot directly interfere
with the collectiorphase. Advantage of automated monitoring is thatriésistant to malicious attacks since users
cannot alter the provaiance data. As provenance is collected automatidgategrating provenance data with
the application will be donéuring the software development phase.

Wang-Chiew Tan focuses on data provenance andfidassurrent data based provenance gathering igobs
into

two : annotation-based and non-annotation based @@07). We will be using the annotation basedeah

for provenance gathering. In the annotation based apprceach datum will have annotations attached. to i
When atransformation occurs, the datum is annotated tuigtprovenance information.

4.4  ProvenanceStorage
In most sensor network systems, there is a cemtrdistributed provenance storage system (Ledle.eR005).
Prove-nance of sensor data is stored for later reuserefiedence. We will transmit the provenance data to

central storageWe will keep the amount of provenance data atél@ired minimum level not to consume much
energy for transmission.
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In our centralized system, there will be a conmmecbetween the data and metadata, they are stordifferent
systemswith different representations. Maintenance is nutificult in a centralized approach but it is easio
query andsearch provenance since the mechanism is desigegihg this requirement in mind (Simmhan, et al.,
2005).

All the data and provenance data flowing over teevork related to the localization will be keptthre Central
Stor- age. Everytime a new target steps in the fielda @eitd provenance records will be stored in the r@ent
Storage. Thehistorical data will also be available in the CénBdorage for network maintenance such as
figuring out the sensotat are silent for very long time, determining treup of sensors that are misreporting.
Final decision regarding thecation estimation will be done at the Headquarter

Provenance collecting and processing is very cobltywvever richer provenance is better for failueeavery.
Thereforehow much provenance to collect is an important@oi

In our system data is tightly coupled to provenadega and metadata are stored in the same steysigan with
the

same keys. Provenance data of the images will taehetd to the same picture file as done in the drsaof
NASA Flexible Image Transport System. We will recursiveverse the ancestry path in order to obtairfuthe
metadataistory.

4.5 DataFusion

Multi sensor data fusion has many advantages dmgtessource data such as increased accuracy (g
1997).In our model, data from several sensors is combatembmputation nodes where data fusion takes place
In a targetocalization network, there are many sensors dietgcne target, in this case it will be less dedini
where the targetare. In our model, binary localization data comirgm sensors will be fused in fusing nodes
and more trusted resultgll be produced. collaboration between sensors

Our paper takes advantage of the research thdddeasdone on "header nodes". There is a lot o&relsgoapers
onthis topic. the general idea in these papers isséoone node in the network as the one that conuagsi to a
hop nodganother header node) for a group of nodes. Thatis node in a group (chosen by geometric reasons
to be close tahe others) as the one that collects and trangnidsmation for the group.this is called the header
node. the research

idea in these papers is to reduce the overall graygsumption of nodes in the network since mostesonly
have tocommunicate a short distance). We will use the éeaddes as our nodes that do the computation.

One significant innovation our paper has relateddta fusion is that the fusing scenario is dynarfitte group

of

sensors that are being fused are changing as tiverkés self-adjusting using the historical prosene data. On
theother hand data fusion helps in getting more ateussults compared to a model where all datalisated at a
centralnode without any intelligence.

Data fusing sensors will be invoked when input datprovided by reporting sensors otherwise thely stay
inactive (to consume less energy). We believe that datase$uliaround the place it is created. If sensoes ar
reporting “1"saround a place then the likelihood is that theetig near by and it is not reasonable to forward
the sensor data ovarany hops to the regions of undetecting sensoms.efdre it is not efficient to transmit sensor
data and the provenanoéthe data over long distances. In our modeldita will be transmitted until it reaches
to the nearest computatiorode. Our algorithm will be running on computatiomdes and localization of the
target will be done.

We are interested in a scenario where a smartdusine (CN) collects information from multiple nedeNe
call a fusing node computation node (CN) in our modelr fdising scenario is dynamic based on an adaptive
method,the group and type of nodes that are fused is tatits Connection between sensors and CNs are not
permanent, theonnections are formed temporarily. For example térget is moving along a path, in the first
time slot CN 1 carfuse data coming from sensor A, B and C, in theosédcdime slot it can fuse the data
coming from sensors C, D, &d a camera sensor. In our model sensors with piditive detection transmit
their reading, they report a “1” beiig awake cycle or they stay in sleep cycle. Torgete accurate results we
fuse the data coming from many nearmdes that are transmitting “1” grouping them baeedthe target
movement path. The computation node can beniiee different states (0) waiting (1) collectir®) @sking to
another node for more information when the arrivitagais insufficient or insensible. In order to prevewtse
and energy consumption, sensors do not talk tootheh theysimply report to a CN. However computation
nodes talk to eachother in case of a failure amasmission. The fusedhta is collected at a central node and
computations are done at this central node totfiedexact coordinates of tterget.

There are many different fusion approaches. In omsy information travel over multiple nodes before
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reaching taa destination, fusion nodes should be aware oflépendency information to be fused and avoid
duplication, thisis achieved by provenance in our system. For exanmpthe target localization network we
work on, there can bmultiple targets in the field, two computation nedean report the existence of the
same target. In this kind ofsituation, provenance data will be useful to detteeiduplicates (Bal, et al., 2010).

4.6 Fault-tolerance based on Cognitive Decisions

Consider the following scenario: A target stepsairthe field and a target localization decisiorde by the
network.In the headquarter, users see that the targetasized wrongly. However, the other localizatiomsé

by the networlwere totally correct. Provenance will be helpfuttsis point in order to understand the reasons
behind. In our modeprovenance graphs of localizations (data flow fimme node to another) can be examined
and causes for any changefault can be detected. After finding the error,using the provenance information
the localization can be redone.Our dataflow-oriented sensor network model will tta and tolerate some
failure patterns. As our flow model hasntrol and value dependencies stored, fault-toawill be doable.
Using the snapshots built through provenartiese,network gains a cognitive strength and can nivatkdligent
decisions such as omitting a sensor node, debugdimjon node. For example when a sensor is failingan

be replaced and retransmission can be done. SossbfEexceptions in a sensor network can be (1) sensor
node failure : inability of the sensor node to smit any further (2)deadline expiry : sensors can have
transmission deadlines such as in the networkeéheas can be implemented sticht they will transmit every
20 minutes. But in our target localization sensetwork, it will be more meaningful thave sensors which are
triggered by a signal of a living being trespassif®) resource unavailability : a computatioode needs access
to data coming from several sensor nodes. if tdase is unavailable then the data fusion catedat place. In
our system these dependencies will be defined @sdiépendency. (4) external trigger : triggers wi# used

to signal the occurrence of an event such as ateetéarget in the sensors coverage area. A sensercarstop
being triggered by events, that will rise an eximept(5) constraint violation : according to theianufacturing
details (lifetime), due to energy constraints (wéalttery), due to environmental conditions (exa@ssvind,
rain).

One of the most frequent problems in wireless senstworks are path loss and unpredictable mutigBal

et al.,2010). In our model, we have access to the datadiagram that provenance makes available hence any
path loss andhultipath can be detected.

Figure 3: Sensor nodes are forwarding to computatiges.
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Figure 7: OPM Graph with details on Location Estilmaon central node

5 Challenges

There are challenging research questions concetthisgstudy. One question is that data coming fioow
manysensors should be fused. For instance fusing dat@&ery two sensors can be too costly, fusing déta
every 100sensors can be too inaccurate. A reasonable nushbeid be found according to parameters such as
the size of thdield, number of sensors. Computation nodes addmaplexity of the network and transmissions to
them cost energyut on the other hand we should also take into aatcthe reduction in the cost because of the
decrease in amount of tidata transmitted. For example at a fusing nodeethdl be computations done using
the reported values of the targigtections coming from multiple sensors. The restithe computation which

is a single value will be transmittegter the network. This will decrease the data oagtlin the network. On the
other hand data fusing nodes add cogeims of time and energy to the network as theyeatea nodes and
computations require energy.

18



Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) LN
Vol4, No.2, 2014 ISTE

L I I e

Dula Relricva
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6 Conclusion

Dealing with provenance in systems where data mal@sy such as sensor networks is an open resaegah
becausat is hard to manage provenance when objects at@lenor distributed. Various solutions have been
proposed to thigproblem but often solutions are domain-specifictrde solution will require architectural
changes at the main levelgch as hardware, network, operating system (Chetrady, 2009b).
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