
Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

6

Sans Signature Buffer Overflow Blocker
G. Prisilla Jayanthi

Holy Mary Institute Of Technology & Science

Bogaram ,Keesara ,RRDist

Mobile :9393316810 Email: prisillajayanthi@yahoo.co.in

Ambika Prasad Mohanty

Senior Consultant, Infotech Enterprises,

Panjagutta, Hyderabad -500082

AmbikaPrasad.Mohanty@infotech-enterprises.com

Abstract

The objective of Sans Signature buffer overflow blocker mainly is to intercept communications between a
server and client, analyse the contents for the presence of executable code and prevent the code reaching
the server. In this project, Sans Signature is a signature free approach, which can identify and block new
and unknown buffer overflow attacks. The system can intercept the data coming via various channels
before the server receives the packets. Typically, the data exchanged with a standard application is the data
related to the transaction. Therefore, the presence of executable code along with data is something
unwarranted. This system will analyze the incoming of the data, check is it contains any executable code. If
the executable code is found, the packet is dropped. If the data packet is found to be safe, it is allowed to
pass through. The payload or data is analyzed at the application layer called Proxy based Sans Signature.
The system has been designed to identify certain executable pattern that is considered harmful. It also has a
thresh hold limit beyond which, the packet will be considered to be discarded. Given the intelligence of the
algorithm, it prevents most of the buffer overflow attacks. The system can handle the packet analysis in a
transparent manner, thus making it suitable for deployment at Firewall/Application Gateway level. Hence,
it is quite powerful and efficient with very low deployment and maintenance cost.

Keywords: buffer overflow attacks, code-injection attacks, Defense-side obfuscation

1. Introduction

In computer system, buffer overflow is one of the most serious vulnerabilities. It is the root cause for most
of the cyber attacks such as server breaking-in worms, zombies and botnets. A buffer overflow occurs
during program execution when a fixed-size buffer has had too much of data copied into it. This causes the
data to overwrite into adjacent memory locations, and depending on what is stored there, the behavior of
the program itself might be affected. A buffer overflow attack may corrupt control flow or data without
injecting code such as return-to-libc attacks and data-pointer modification.

1.1 Existing System

STILL , a real-time, out-of-the-box, signature-free, remote exploit binary code injection attack blocker to
protect web servers. STILL is motivated by an important observation that the request messages to web
servers are exclusively data and not binary executable code. Since remote exploits are typically binary
executable code, this observation indicates that if we can precisely distinguish (service requesting)
messages that contain binary code from those that do not contain any binary code, we can protect web
servers as well as other Internet services (which accept data only) from binary code-injection attacks by
blocking the messages that contain binary code. An application layer proxy-based STILL is deployed
between the web server and the corresponding firewall to protect web servers. STILL (including static taint

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

7

analysis and initialization analysis) detect not only unobfuscated exploit code, traditional polymorphic and
metamorphic exploit code, but also self-modifying and indirect jump obfuscation code that could easily
defeat previous static analysis approaches. Indeed, STILL is robust to almost all anti-signature, anti-static-
analysis and anti-emulation obfuscation. STILL is signature free, thus it can block new and unknown
remote code injection attacks such as zero-day exploit code.

The new techniques used previously to detect self-modifying and indirect jump exploit code are called
static taint analysis and initialization analysis. We observe that self-modifying and indirect jump exploit
code first need acquire the absolute address of payload. Accordingly, we first try to find the piece of code
which acquires the absolute address of pay-load at runtime from an instruction sequence. The variable
which holds the absolute address will be marked tainted. Then, we use the static taint analysis approach to
track the tainted values and detect whether tainted data are used in the ways that could indicate the presence
of self-modifying and indirect jump exploit code. A tainted variable is propagated to a new tainted variable
by data transfer instructions that move data (e.g., push, pop, move) and data operation instructions that
perform arithmetic or bit-logic operations on data (e.g., add, sub, xor). For data transfer instructions, the
destination operand will be tainted if and only if the source operand is tainted. For data operation
instructions, the destination operand will be tainted if and only if either source or destination operand is
tainted.

Address Space Layout Randomization (ASLR) is a main component of PaX . Address-space
randomization, can detect exploitation of all memory errors. Instruction set randomization can detect all
code injection attacks. Nevertheless, when these approaches detect an attack, the victim process is typically
terminated. “Repeated attacks will require repeated and expensive application restarts, effectively rendering
the service unavailable.”

Detection of Data Flow Anomalies There are static or dynamic methods to detect data flow anomalies in
the software reliability and testing field. Static methods are not suitable in our case due to its slow speed;
dynamic methods are not suitable either due to the need for real execution of a program with some inputs.

2. Proposed System

Sans Signature is a generic approach which does not require any pre-known patterns. Then, it uses the
found patterns and a data flow analysis technique called program slicing to analyze the packet’s payload to
see if the packet really contains code .

Besides, they used a special rule to detect polymorphic exploit code which contains a loop. Although they
mentioned that the above rules are initial sets and may require updating with time, it is always possible for
attackers to bypass those pre-known rules. Moreover, more rules mean more overhead and longer latency in
filtering packets. In contrast, Sans Signature exploits a different data flow analysis technique, which is
much harder for exploit code to evade.

2.1 Performance Evaluation

2.1.1 Proxy –Based Sans Signature

To evaluate the performance impact of Signature free to web servers, we implemented a proxy- based
Sans Signature prototype. Fig. shows the architecture of Sans Signature.

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

8

 (Requests with Pure Data)

 Pass

 Proxy BasedSans Signature

HTTP

Requests

Pass (Requests are printable ASCII)

Block

 (Requests contains executable codes)

Figure 2.1.1 : The architecture of Sans Signature

3.Res

ult

Figure 1: To create the opcode values, the machine instructions are entered at debug.exe.
Few machine instructions entered to generate the more opcode values using machine instructions

URI
Decoder

Instruction
Sequences
 Distiller

ASCII
Filter

Instruction
Sequences
 Analyzer

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

9

Figure2 : The screen shows the opcode values generated and stored in the buffer, and are compared with
the input data that enter the system.

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

10

.

Figure3: The screen shows the main page where the input data is entered to check whether any of the data
matches with the opcode values

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

11

Figure4: Screen shows matched characters with the opcodes values which are harmful data (mixed with
executable code).

3.1 Performance Analysis

The proposed paper is implemented in C Language on a Pentium-III PC with 20 GB hard-disk and 256 MB
RAM with apache web server. The propose paper’s concepts shows efficient results and has been
efficiently tested on different messages.

4. Conclusions

The proposed Sans Signature, an online signature-free out-of -the- box blocker that can filter code-injection
buffer overflow attack message, one of the most serious cyber security threats. Sans Signature does not
require any signatures, thus it can block new unknown attacks. Sans Signature is immunized from most
attack-side code obfuscation methods and good for economical Internet wide deployment with little
maintenance cost, negligible throughput degradation and low performance overhead and also enhances
the complex patterns for instruction.

5.References

Network and Complex Systems www.iiste.org
ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)
Vol 2, No.1, 2012

12

Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu,“ Sigfree: A Signature –Free Buffer Overflow

Attack Blocker” IEEE transactions on dependable and secure computing, vol 7, no. 1, January – March

2010.

Zhaohui Liang, Bin Liang, Luping Li, Wei Chen, Qingqing Kang, Yingqin Gu , “Against Code Injection

with System Call Randomisation” 2009 International Conference on Networks Security , wireless

communications and trusted Computing.

John J. Donovan , “Systems Programming ”, Tata McGraw- Hill publishing company limited.

Kenneth J. Ayala , “The 8086 Microprocessor Programming and Interfacing the PC” , an International

Thompson Publishing company.

Yu-Chang Liu, Glenn A. Gibson., “Micro Computer System : The 8086/8088 family Architecture,

Programming and Design” .

Brain W. Kernighan, Dennis M. Ritchie,“The C programming Language” , Tata McGraw- Hill publishing.

Benjamin Schwarz Saumya Debray Gregory Andrews ,“Disassembly of Executable Code Revisited* “

,Department of Computer Science University of Arizona Tucson, AZ 85721

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

