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Abstract 
In this paper, we introduce a novel approach based on modified artificial neural network and optimization 
teqnique to solve partial differential equations. Using modified artificial neural network makes that training 
points should be selected over an open interval  without training the network in the range of first and end points. 
Therefore, the calculating volume involving computational error is reduced. In fact, the training points 
depending on the distance selected for training neural network are converted to similar points in the open interval  
by using a new approach, then the network is trained in these similar areas. In comparison with existing similar 
neural networks proposed model provides solutions with high accuracy. The proposed method is illustrated by 
two  numerical examples.  
Keywords: Partial differential equation, Modified  neural network, Feed-forward neural network,BFGS 
Teqnique, Hyperbolic tangent activation function. 
 
1.Introduction 
Differential equations are used as a powerful tool in solving many problems in various fields of human 
knowledge, such as physics, chemistry, mechanics, economics, etc. one application of the differential equation is 
turning problems and natural phenomena into differential equations, then by solving the DE the answer is 
described and the phenomena are calculated. Usually many of these problems do not have analytical solutions or 
their solution may have certain implications. Many researchers have tried to approximate the solutions of these 
equations and proposed a lot of algorithms such as: predictor-corrector, Runge-Kutta, finite difference, finite 
element and other methods. In recent years artificial neural networks for estimation of the ordinary differential 
equation (ODE) and partial differential equation (PDE) have been used. lee and Kang (1990) used parallel 
processor computers to solve a first order differential equation with Hopfield neural network models. Meade and 
Fernandez (1994) solved linear and non-linear ODE by using feed-forward neural networks architecture and B-
splines of degree one. Lagaris, Likas & Fotiadis (1998) used artificial neural network for solving ODEs and 
PDEs with the initial / boundary value problems. In comparison with jammes and Liu (Liu & Jammes 1999), 
malek and shekari presented numerical method based on neural network and optimization techniques which the 
higher-order DE answers approximates by finding a package form analytical of specific functions (Malek & 
Shekari 2006) which is a combination of two terms: 
The first term is related to the initial / boundary condition and the second term contains parameters related to the 
neural network, the used neural network is a two-layer network with one hidden layer and the activation function 
used in the hidden layer is a sigmoid function or hyperbolic tangent function. During the past few years, the 
numerical solutions of ODEs and PDEs by using artificial neural network have been studied by several authors 
(Ahmed & Bilal 2014, Biglari,Assareh , Poultangari & Nedaei 2013, Baymani,Kerayechian & Effaati 2010, 
Ghalambaz,Noghrehabadi,Behrang,Assareh,Ghanbarzad & Hedayat 2011  , Ibraheem & Khalaf 2011,Jalab , 
Ibrahim ,Murad,Mulhum  & Hadid 2012, Tawfiq & Al-Abrahemee 2014, Putcha & Deepika 2013, Pattanaik & 
Mishra 2008, Parand,Roozbahani & Babolghani 2013, Wu & Hsu 2012 Yazdi,Pakdaman & Modaghegh 2011). 
In this paper we view the problem from a different angle. We present a modified method for solving  partial 
differential equations (PDE's) that relies on the function approximation capabilities of feed forward neural 
networks and results in the construction of a solution written in a differentiable, closed analytic form. This form 
employs a feed forward neural network as the basic approximation element, whose parameters (weights and 
biases) are adjusted to minimize an appropriate error function. To train the ANN which we design, we employ 
optimization techniques, which in turn require the computation of the gradient of the error with respect to the 
network parameters. In the proposed approach the model function is expressed as the sum of the two terms: the 
first term satisfies the initial / boundary conditions and contains no adjustable parameters. The second term can 
be found by using feed forward neural network(FFNN), which is trained so as to satisfy the differential equation. 
Since it is known that a multilayer FFNN with one hidden layer can approximate any function to arbitrary 
accuracy, thus our ANN contains one hidden layer.  
This modified method is called modified artificial neural network(MANN) for solving ordinary and partial 
differential equations. This new method based on replaced every x in the training set (where x ∈ �a, b�) by the 
polynomial Q (x) = � (x + 1) such that Q (x) ∈ (a, b) by choosing a suitable � ∈ (0	, 1). In this paper, we will 
illustrate this modified method by solving  !" numerical examples and we will introduce a comparison between 
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our results and a results which are calculated by other numerical methods such as  finite element method.  
2. Artificial Neural Network 
    An Artificial neural network (ANN)  is a simplified mathematical model of the human brain, it can be 
implemented by both electric elements and computer software. It is a parallel distributed processor with large 
numbers of connections, it is an information processing system that has certain performance characters in 
common with biological neural networks. ANN have been developed as generalizations of mathematical models 
of human cognition or neural biology, based on the assumptions:  1. lnformation processing occurs at many simple elements called neurons that is fundamental the operation of 
ANN's. 2. Signals are passed between neurons over connection links.  3. Each connection link has an associated weight which, in a typical neural net, multiplies the signal transmitted.  4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) 
to determine its output signal. 
There are two main connection formulas (types):feedback(recurrent) and feed-forward connections.Feedback is 
one type of connection where the output of one layer routes back to the input of a previous layer , or to the same 
layer.Feed-forward neural network(FFNN) does not have a connection back from the output to the input 
neurons(Fig.1).There are many different training algorithms, but the most often used training algorithm is the 
back propagation(BP)rule.ANN is trained to map a set of input data by iterative adjusment of the 
weights.Information from inputs is feedforward through the network to optimize the wieghts between neurons. 
Optimization of the wieghts is  made by backward propagation of the error during training phase.The ANN reads 
the input and output values in the training data set and changes the value of the wieghted links to reduce the 
difference between the predicted and target(observed)values.The error in prediction is minimized across many 
training cycles(iteration or epoch) until network reaches specified level of accuracy.A complete round of forward 
backward passes and wieght adjusments using all input output pairs in the data set is called an epoch or iteration. 
In order to perform a supervised training we need a way of evaluating the ANN output error between the actual 
and the expected outputs .A popular  measure is the mean squared error (MSE) or root mean squared 
error(RMSE) (Tawfiq 2004, Tawfiq & Al-Abrahemee 2014) &. Description of The Method  
    In this section we will illustrate how our approach can be used to find the approximate solution of the general 
form a second order  differential equation(Lagaris,Likas & Fotiadis 1998):  
   G'x()	, Ψ(x())	, ∇	Ψ(x())	, ∇�	Ψ(x()), = 0 ,  x() ∈ D                                                (1) 
Where a subject to certain boundary conditions (BCʼs) or initial conditions (ICʼs) (for instance Dirichlet and / or 
Neumann conditions) and x() = (x1	, x2	, …… , xn) ∈ Rn , D ⊂ Rn denotes the domain and Ψ(x()) is the solution to be 
computed.  
To obtain a solution to the above differential equation, the collocation method is adopted which assumes a 
discretization of the domain D and its boundary S into a set points D4  and S5, respectively. The problem is then 
transformed into the following system of equations: 
G'x()6	, Ψ(x()6)	, ∇	Ψ(x()6)	, ∇�	Ψ(x()6), = 0 , ∀	x()6 ∈ D4                                           (2) 
Subject to the constraints imposed by the BCʼs or ICʼs. 
If Ψ8 (x()	, p()) denotes a trial solution with adjustable parameters p(), the problem is transformed to a discretize form  
Min

p()  ∑ 	:G'x()6Ψ8(	x()6, p()	), ∇Ψ8(	x()6, p()	), ∇�Ψ8(	x()6, p()	),;�<()=	∈	>4                         (3) 

Subject to the constraints imposed by the BCʼs or ICʼs.  
In the our proposed approach, the trial solution Ψ8 employs a feed forward neural network and the parameters p() 
correspond to the weights and biases of the neural architecture. We choose a form for the trial function Ψ8(x()) 
such that it satisfies the BCʼs or ICʼs. This is achieved by writing it as a sum of two terms.  
            Ψ8(x()) =A(x())+ F'x()	, N(x()	, p()),                                                               (4) 
Where N(x()	, p()) is a single-output feed forward neural network with parameters p() and n input units fed with the 
input vector x(). 
The term A(x()) contains no adjustable parameters and satisfies the boundary conditions. The second term F is 
constructed so as not to contribute to the BCʼs or ICʼs, since Ψ8(x()) satisfy them. This term can be formed by 
using a ANN whose weights and biases are to be adjusted in order to deal with the minimization problem 
(Lagaris,Likas & Fotiadis 1998). 
Our numerical result shows that our approach, which based on the above formulation is very effective and can be 
done in reasonable computing time to compute an accurate solutions.  ?. Computation of The Gradient  
An efficient minimization of (3) can be considered as a procedure of 
training the ANN, where the error corresponding to each input vector x()6 is the value E(x()6) which has to forced 
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near zero. Computation of this error value involves not only the ANN output (as is the case in conventional 
training) but also the derivatives of the output with respect to any of its inputs. Therefore, in computing the 
gradient of the error with respect to the network weights (Tawfiq 2004).  
Consider a multilayer FFNN with n input units, one hidden layer with H sigmoid units and a linear output unit.  
The extension to the case of more than one hidden layers can be obtained accordingly.  
For a given input vector x() = (x1	, x2	, … , xn) the output of the ANN is:  
    N = ∑ v6	s(z6)B6C�  , where z6 = ∑ w6E 	xE + b6nEC�     w6E denotes the weight connecting the input unit F to the hidden unit i,  v6 denotes the weight connecting the hidden unit i to the out put unit, b6 denotes the bias of hidden unit i, and  s(z) is the hyperbolic tangent activation function.  
The gradient of ANN, N with respect to the parameters of the ANN can be easily obtained as:  

          
HNHI= = s(z6)                                                                                                  (5) 

          
HNHJ= = v6 s´(z6)                                                                                              (6) 

          
HNHL=M = v6 s´(z6)xE                                                                                      (7) 

Once the derivative of the error with respect to the network parameters has been defined, then it is a straight 
forward to employ any minimization technique and we will use BFGS quasi-Newton method . N. Illustration of The Method  
We will consider a two - dimensional problems. However, it is 
straightforward to extend the method to more dimensions. 
For example, consider the Poisson equation  ( Lagaris,Likas & Fotiadis 1998): 

          
OPQ(<	,R)O<P   + 

OPQ(<	,R)ORP  = f(x	, y)                                                                   (8) 

x ∈ �0	, 1� , y ∈ �0	, 1� with Dirichlet BC: Ψ(0	, y)  = f0(y) , Ψ  (1	, y)  = f1(y)  , Ψ(x	, 0)  = g0
(x)  and Ψ  (x	, 1)  = g1

(x)  , where f0  , f1  , g0  and g1  are 
continuous function.  
The trial solution is written as  Ψ8 (x	, y) = A(x	, y) + x(1 − x) y(1 − y) N(x	, y, p())                                      (9) 
Where A(x	, y) is chosen so as to satisfy the BC, namely:  
A(x	, y) = (1 − x) f0(y) + x f1(y) + (1 − y) Vg0

(x) −	 W(1 − x)	g0
(0) + 	xg0

(1)YZ + yVg1
(x) − 	W(1 − x)	g1

(0) +	xg1
(1)YZ                                     (10) 

For mixed boundary conditions of the form:  Ψ(0	, y) = f0(y), Ψ(1	, y) = f1(y), Ψ(x	, 0) = g0
(x) and ([Ψ(x	, 1)/[y) = g1

(x)  
(i.e., Dirichlet on part of the boundary and Neumann elsewhere), the trial solution can be written as  Ψ8(x	, y)  = B(x	, y)  + x(1 − x)y�N(x	, y, p()) − 	N(x	, 1, p()) − 	[N(x	, 1, p())/[y�                                                                                            
(11) 
And B(x	, y) is again chosen so as to satisfy the BCʼs:  
B(x	, y) = (1 − x)f0(y) + x f1(y) + g0

(x) − 	 W(1 − x)	g0
(0) + 	xg0

(1)Y +  yVg1
(x) −	 W(1 − x)	g1

(0) + 	xg1
(1)YZ                                                      

(12) 
Note that the second term of the trial solution does not affect the boundary conditions since it vanishes at the 
part of the boundary where Dirichlet BCʼs are imposed and its gradient component normal to the boundary 
vanishes at the part of the boundary where Neumann BCʼs are imposed. In all the above PDE problems the error 
that should be minimized is given by:  

E�p()� = ∑ ]OPQ^(<=,R=)	O<P 	+	 OPQ^(<=,R=)ORP − 	f(x6	, y6)`�a6C�                                    (13)    

Where (x6, y6) are points in �0,1� ×  �0,1� (Tawfiq 2004). b. Proposed  Method  
    In this section we will introduce a novel method to modify the artificial neural network ANN . This new 
method based on replaced every x in the input vector (training set) x()  = (x1	, x2	, …… , xn) , xE  ∈ �a, b�  by a 
polynomial of degree one.  Ezadi and parandin (2013) used the function: 
          Q(x) = � (x + 1) , � ∈ (0,1)                                                                (14) 
Then the input vector will be: (Q(x�)	,	Q(x�) , ……  Q(xa)) , Q(xE)  ∈  (a	, b)  In this paper, we named this 
proposed method modified artificial neural network (MANN). Using modified artificial neural network makes 
that training points should be selected over the open interval (a	, b) without training the neural network in the 
range of first and end points. therefore, the calculating volume involving computational error is reduced. In fact, 
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the training points depending on the distance �a	, b� selected for training neural network are converted to similar 
points in the open interval (a	, b) by using a new approach, then the network is trained in these similar areas. 
From above, we have: for a given input vector (x1	, x2	, …… , xn) , xE ∈ �a, b�, the output of the modified artificial 
neural network is:  
    N = ∑ v6B6C� 	s	(z6) , where  z6 = ∑ W6E 	Q(xE) + b6nEC�                             (15) 
and Q(xE) = � (xE + 1), � ∈ (0,1) and xE ∈ �a	, b�, then Q(xE) ∈ (a	, b)                                                                                                                             
Note that, equations (5	_	7) will be:  HNHI= = s'W6E 	Q(xE) + b6, = s'�	(xE + 1)	W6E + b6,                                       (16) HNHJ= = v6 s´'W6E 	Q(xE) + b6, = v6 s´'�	(xE + 1)	W6E + b6,                            (17) HNHL=M =v6 Q (xE) s´'W6E 	Q(xE) + b6,=v6 Q(xE) s´'�	(xE + 1)	W6E + b6,       (18)   where  s´ is the first derivative of 

the hyperbolic tangent function.  h. Solution of Partial Differential Equations  
    We will consider boundary value problems partial differential equation with Dirichlet conditions or Neumann 
conditions. All the subsequent problems were defined on the domain [0,1] × [0,1] and in order to perform 
training we consider a mesh points obtained by considering ten equidistant points of the domain [0,1] of each 
variable. In analogy with the previous cases the neural network archilecture was considered to be FFNN with 
two inputs (accepting the coordinates x and y of each point), 10 hidden units and one linear output unit (Fig.1). 
For every entries x and y , the input neurons makes no changes in its inputs, so the input to the hidden neurons is: 
           NetE = x	wE� + y	wE� + BE ,   F = 1,2,……,m                                      (19) 
Where wE� and wE� are a weights from the input layer to the Fth unit in the hidden layer, BE is an Fth bias for the Fth unit in the hidden layer. The output in the hidden neurons is :  
 ZE = s(netE)    , F = 1,2,……,m.                                                                      (20) 
The output neuron make no changes in its input, so the  input to the output neuron is equal to output:  N = ∑ VE 	ZEmEC�  .                               …(21) 
• For MANN, eq.(19) will be: 
 netE = Q(x) wE� + Q(y) wE� + BE = �(x+1) wE� + �(y+1) wE� + BE         (22)                    ZE = s(�(x+1) wE� + �(y+1) wE� + BE)                                                         (23)         
 N = ∑ VEmEC�  s(�(x+1) wE� + �(y+1) wE� + BE)                                           (24) 
Where F = 1,2,……,m , � ∈ (1,0) and Q(x) , Q(y) ∈ (a, b) 
8. Numerical Examples  
    In the section we report some numerical results and the solution of a number of model problems. In all cases 
we used a three-layer FFNN having two input units, one hidden layer with 10 hidden units (neurons) and one 

output unit, and hyperbolic tangent activation function, that is:  s(x) = 
kl	m	knlkl	o	knl  . For each test problem, the 

analytical solution uq(x()) was known in advance, therefore we test the accuracy of the obtained solutions by 
computing the deviation:  ∆u(x()) = su8(x()) -	uq(x())s            (25)                                 
We will use BFGS quasi-Newton method to minimize the error function. Also, we will introduce a comparison 
between the usual artificial neural network(UANN) and the modified artificial neural network(MANN) by using 
a numerical results in other references . 
Example (8.1): Consider the boundary value problem: 

          
HPuH	xP + 

HPuH	yP = 0     , x, y ∈ �0,1�  
With the Dirichlet boundary conditions: u(0, y) = 0 , u(1, y) = 0 , u(x, 0) = 0 and u(x, 1) = sin tx . 

the analytical solution is: uq(x, y) = 
u6av<	u6awvRu6awv  . 

By using (9), the trial solution has the form: u8(x, y) = y	sin	πx + xy 'x - 1, 'y - 1, N (x	, y, p).  
To find the error function  E  that must be minimized  we calculate: HPz^(<,R)H	xP  = -t�y sin	tx + (y�- y) {'x�-x, HPNH	xP +'4x-2, HNHx

+2N|             (26) HPz^(<,R)H	yP  = 'x�-x, {'y�-	y, HPNH	yP +'4y-2, HNHy
+2N|                                     (27) 

By using eq. (13), we have:  
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E(p) = ∑ 	��6C�  

���
���
�-π�y6 sin πx6 + 'y6�-	y6, �'x6�-x6, OP�(<=	,R=,�)O	<P � + '4x6	–	2,

	O�(<=	,R=,�)O< + 2N(x6	, y6, p) + 'x6�-x6,
�'y6�-	y6, OP�(<=	,R=,�)O	RP + '4y6-	2, O�(<=	,R=,�)O< +2N(x6	, y6, p)����

���
��

 

                                                                                                                          (28) 
For eq. (21), we have: N(x	, y, p) = ∑ v�	s	'x	wE�+	y	wE� +	BE,��EC�                                                  (29) H	�(<	,R,�)H<  = ∑ vE 	wE�	s´��EC� 'x	wE�+	y	wE� +	BE,                                          (30) HP	�(<	,R,�)H<P  = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	y	wE� +	BE,               																									(31) H	�(<	,R,�)HR  = ∑ vE 	wE�	s´��EC� 'x	wE�+	y	wE� +	BE,                                          (32) HP	�(<	,R,�)HRP  = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	y	wE� +	BE,                                       (33) 
By substitute (29 – 33) in (28) , we have:  

E = ∑ 	��6C�  

��
��
��
�� -π�y6 sin πx6 + 'y6�-	y6,	('x6�-x6,∑ vE 	wE�� 	��EC�s´´'x6	wE�+	y	wE� +	BE, + '4x6-	2,∑ vE 	wE�	��EC�s´'x6	wE�+	y	wE� +	BE,	+2∑ vE 	s	'x6	wE�+	y6	wE� +	BE,)��EC�

+'x6�-x6,('y6�-	y6, ∑ vE 	wE�� 	s´´��EC� 'x6	wE�+	y6	wE� +	BE,
+ '4y6-	2,∑ vE	wE�	s´��EC� 'xi 	wE�+	y6	wE� +	BE, + 2∑ vE 	s	'x6	wE�+	y6	wE� +	BE,��EC� ) ��

��
��
��
�

 

                                                                                                                          (34) 
Then one can use (34) to adjust the weights and biases with respect to usual artificial neural network(UANN). 
• For MANN : in the same way, we have: 

E = ∑ 	��6C�  

���
���
���
� -π�y6 sin πx6 + 'y6�-	y6,	('x6�-x6,∑ vE 	wE�� 	��EC� s´´'Q(x6)	wE�+	Q(y6)	wE� +	BE, + '4x6-	2,∑ vE 	wE�s´	��EC�'Q(x6)	wE�+	Q(y6)	wE�+BE,+2∑ vEs	��EC�'Q(x6)	wE�+	Q(y6)	wE� +	BE,)+'x6�-x6,('y6�-	y6,∑ vE 	wE�� 	s´´��EC� 'Q(x6)	wE�+	Q(y6)	wE� +	BE,+ '4y6-	2,∑ vE 	wE�	s´��EC� 'Q(x6)	wE�+	Q(y6)	wE� +	BE, + 2∑ vE 	s	'Q(x6)	wE�+	Q(y6)	wE� +	BE,��EC� ) ���

���
���
��

      (35) 

We use (35) to adjust the weight and biases w. r. t. MANN.  
Since     x		, y ∈ �0,1� , then Q(x) , Q(y) ∈ (0,1) and since Q(x) = �(x+1) , Q(y) = �(y+1) , then we must choose � < 0.5. for � = 0.4 , the training set will be: 
      x		: 0      0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1 
      y : 0      0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1 
Q(x): 0.4			0.44		0.48		0.52		0.56		0.6				0.64		0.68		0.72		0.76		0.8 
Q(y): 0.4			0.44		0.48		0.52		0.56		0.6				0.64		0.68		0.72		0.76		0.8 
Also , we  solved this example by using usual artificial neural network, these result can be found in table (1).   
Analytical and trial solutions for this problem can be found in table (1) and figures (2) and (3) .            
Example (�. �): Consider the non-linear PDE: HPuH	xP + 

HPuH	yP + u 
H uH	y = sin πx '2 - π�y�+	2y� sin πx,,  

Where x, y ∈ �0,1� and with mixed boundary conditions: 

u(0,y) = 0 , u(1,y) = 0, u(x , 0) = 0, 
H uH	y (x,1) = 2 sin πx. 

The analytical solution for this problem is: ua	(x, y) = y� sin πx. 
By using (11 and 12) , the trial solution has the form: u8(x, y) = 2y sin πx + xy (1 - x) {N(x	, y, p)-	N(x	, 1, p)-	 H	�(<	,�,�)HR |       (36)       

From (36), we can find: 
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HPz^(<,R)H	xP  = - 2π�	y sin πx  + y'x - x2,  :HP	�(<	,R,�)H<P -
HP	�(<	,�,�)H<P -

H�	�(<	,�,�)HR	Hx Hx
;      

+ 2y(1-2x):H	�(<	,R,�)H< -
H	�(<	,�,�)H< -

HP	�(<	,�,�)HR	Hx 
; − 2y :N(x	, y, p) − 	N(x	, 1, p) − H	�(<	,�,�)HR ;                              (37) H	z^(<	,R)HR  = 2 sin πx  + 'x - x2,  :y H	�(<	,R,�)HR +N(x	, y, p) 	− 	N(x	, 1, p) − H	�(<	,�,�)HR ;                                                        (38) HP	z^(<	,R)HRP  = 'x - x2, :y HP	�(<	,R,�)HRP +2 H	�(<	,R,�)HR ;                                          (39) 

Form eq. (13) , we have:  
E=  

∑

��
��
��
��
��
��
��
� −2π�	y6 sin πx6 +	y6'x6	– 	x6�,:HP	�(<=	,R=,�)H<P − HP	�(<=	,�,�)H<P − H�	�(<=	,�,�)HR	H<	H< ; 	+ 	2y6	(1 − 2x6):H	�(<=	,R=,�)H< − H	�(<=	,�,�)H< − HP	�(<=	,�,�)HR	H<	 ; 	− 	2y6:N(x6	, y6, p)– N(x6	, 1, p)	– H	�(<=,�,�)HR ; + 'x6	– 	x6�,:y6 HP	�(<=	,R=,�)HRP + 2 H	�(<=	,R=,�)HR ; 	+
�2y6 sin πx6+ y6'x6	– 	x6�, :N(x6	, y6, p)– N(x6	, 1, p)- H	�(<=,�,�)HR ;� ∗
�2 sinπxi +'xi–xi

2, :yi

∂N'xi  , yi ,p,
∂y

+N'xi , yi ,p,–N(xi ,1,p)- ∂N(xi , 1,p)
∂y

;�− sin πx6 (2 − π�y6� + 2y6� sin πx6) ��
��
��
��
��
��
��
�

��6C�

�

                                                                                                     

(40)  
Where : N(x, 1, p) = ∑ vE	s	'x	wE�+	wE� +	BE,��EC�                                                     (41) H	�(<	,�,�)H<  = ∑ vE 	wE�	s´��EC� 'x	wE�+	wE� +	BE,                                             (42) HP	�(<	,�,�)H<P  = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	wE� +	BE,                                           (43) H	�(<	,�,�)HR  = ∑ vE 	wE�	s´��EC� 'x	wE�+	wE� +	BE,                                             (44) HP	�(<	,�,�)Hy	Hx

 = ∑ vEwE�	wE�	s´´��EC� 'x	wE�+	wE� +	BE,                                    (45) H�	�(<	,�,�)HR	Hx Hx
 = ∑ vE 	wE�� wE�	s´´´��EC� 'x	wE�+	wE� +	BE,                                   (46) 

• For MANN : in the same way, we have: 

E= ∑

��
���
���
���
���
���
� −2π�	y6 sin πx6 +	y6'x6	–	x6�,	:HP	�(�(<=),�(R=),�)H<P − HP	�(�(<=),�,�)H<P − H�	�(�(<=),�,�)HR	H<	H< ; + 2y6(1 − 2x6):H	�(�(<=),�(	R=),�)H< − H	�(�(<=),�,�)H< − HP	�(�(<=),�,�)HR	H<	 ; 	− 	2y6:N(Q(x6), Q(	y6), p)– N(Q(x6), 1, p) − H	�(�(<=),�,�)HR ; + 'x6	– 	x6�,:y6 HP	�(�(<=)	,�(R=),�)HRP + 2 H	�(�(<=),�(	R=),�)HR ;+

�2y6 sin πx6+ y6'x6	– 	x6�,	�N(Q(x6)	, Q(	y6), p)–N(Q(x6), 1, p)-H	�(�(<=),�,�)HR �� ∗
	�2 sin πx6 +'x6	– 	x6�,�y6 H	�(�(<=),�(	R=),�)HR +N(Q(x6)	, Q(y6), p)–N(Q(x6), 1, p)- H	�(�(<=),�,�)HR �� −

sin πx6 (2 − π�y6� + 2y6� sin πx6) ��
���
���
���
���
���
��

��6C�  

 (47) 
   where                                                        
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N(Q(x), 1, p) = ∑ vE 	s	'Q(x)	wE�+	wE� +	BE,��EC�                                        (48) H	�(Q(<)	,�,�)H<  = ∑ vE 	wE�	s´��EC� 'Q(x)	wE�+	wE� +	BE,                                  (49) HP	�(Q(<)	,�,�)H<P  = ∑ vE 	wE�� 	s´´��EC� 'Q(x)	wE�+	wE� +	BE,                               (50) H	�(Q(<)	,�,�)HR  = ∑ vE 	wE�	s´��EC� 'Q(x)	wE�+	wE� +	BE,                                  (51) HP	�(Q(<)	,�,�)Hy	Hx
 = ∑ vEwE�	wE�	s´´��EC� 'Q(x)	wE�+	wE� +	BE,                         (52) H�	�(Q(<)	,�,�)HR	Hx Hx
 = ∑ vE 	wE�� wE�	s´´´��EC� 'Q(x)	wE�+	wE� +	BE,                        (53) 

Then we can use (47) to update the weights and biases w. r. t. MANN. 
Since x, y ∈ �0,1� , then Q(x) , Q(y) ∈ (0,1). Therefore, we must choose � < 0.5. for � = 0.2, the training set will 
be:  
       x: 0      0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1 
       y: 0      0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1 
Q(x): 0.2			0.22		0.24		0.26		0.28		0.3				0.32		0.34		0.36		0.38		0.4 
Q(y): 0.2			0.22		0.24		0.26		0.28		0.3				0.32		0.34		0.36		0.38		0.4 
 Lagaris,Likas & Fotiadis(1998) solved this problem by using UANN, the maximum deviation in these result ≈ 0.000015, we compared this absolute error with the absolute error which we found by using MANN. Analytical 
and trial solutions for this problem can be found in table (2) and figures (4) and (5) . �. Results and Discussion  
From the numerical examples in this work , it is clear that the modified artificial neural network gives best 
results and better accuracy in comparison with usual artificial neural network . We can conclude that the method 
we propused can handle effectively all types of partial differential equations and provide   accurate approximate 
solution throughout the whole domain and not only at the training set. Therefore, one can use the interpolation 
techniques (such as curve fitting method) to find the approximate solution at points between the training points 
or at points outside the training set. 
Table(3)reports the maximum and minimum absolute error corresponding to the MANN and to the UANN .  
Note that for example (8.2), Lagaris, Likas & Fotiadis (1998) they had compared the results obtained with the 
result that found by using the finite element method which has been widely acknowledged as one of the most 
effective approaches to find the approximate solutions of differential equations. The maximum absolute error by 
using FEM is 0.0000006, this result is better than that obtained by using the MANN which is 0.0000024, but we 
must Note that the accuracy of the MANN method can be controlled by increasing the number of hidden units or 
expansion the training set. 
10. Conclusion 
 In this paper, we presented a hybrid approach based on modified artificial neural networks for solving partial 
differential equations. We demonstrate, for the first time, the ability of modified artificial neural networks to 
approximate the solutions of PDEs . The main reason for using modified artificial neural networks was their 
applicability in function approximation. Further research is in progress to apply and extend this method to solve 
three-dimensional partial differential equations  and   integral equations . 
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Figure 1. (2 x m x 1) Feed-forword  neural  network. 
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Figure 2.  Analytical and trial solutions for example(8.1), for x = 2.5 and y	∈[2,3]. 

 

 
Figure 3. Analytical and trial solutions for example(8.1), for y = 1.5 and x	∈[1.5,2.5]. 
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Figure 4.  Analytical and trial solutions for example(8.2), for x = 2.2 and  y	∈[1.5,2.5]. 

 
 

 
Figure 5.  Analytical and trial solutions for example(8.2), for y = 2.2 and x	∈[2.5,3.5]. 
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Table 1.  Numerical results for example (8.1). 

x y ua (x,y) by UANN 
ut (x,y) 

error    by MANN    ut 
(x,y) 

error 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.008537828 
0.034097183 
0.076183058 
0.132865960 
0.199152886 
0.264808483 
0.311834910 
0.312025528 
0.225309818 

0 

0 
0.008525483 
0.034074725 
0.076231065 
0.132947134 
0.198921655 
0.264353083 
0.311176780 
0.312814326 
0.225765479 

0 

0 
0.000012345 
0.000022458 
0.000048007 
0.000081174 
0.000231231 
0.000455400 
0.00065813 
0.000788798 
0.000455661 

0 

0 
0.008537786 
0.034097144 
0.076183619 
0.132866552 
0.199153514 
0.264809191 
0.311835847 
0.312019907 
0.225305948 

0 

0 
0.000000042 
0.000000039 
0.000000561 
0.000000592 
0.000000628 
0.000000708 
0.000000937 
0.000005621 
0.000003870 

0 
 

Table 2. Numerical results for example (8.2) 
x y ua (x,y) ut (x,y) error 
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0 
0.003090169 
0.02351141 
0.072811529 
0.152169042 
0.250000000 
0.342380345 
0.396418327 
0.376182561 
0.250303765 

0 

0 
0.003087756 
0.023509708 
0.072812021 
0.152169553 
0.250000873 
0.342379432 
0.396418379 
0.37618252 
0.250304127 

0 

0 
0.000002413 
0.000001702 
0.000000492 
0.000000511 
0.000000873 
0.000000913 
0.000000052 
0.000000041 
0.000000361 

0 
 
 
Table 3. Maximum and minimum deviation from the analytical solution for the MANN and the UANN . 

Example  
No. 

   Max. error    Min. error    by    Max. error   Min. error    by 

 
8.1. 
8.2. 

 
0.000005621 
0.000002413 

 
0.000000039 
0.000000041 

 
MANN 
MANN 

 
0.000788798 
0.000015000 

 
0.000012345 
0.00000100 

 
UANN 
UANN 
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