
Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

11

Numerical Solution of Partial Differential Equations by using
Modified Artificial Neural Network ����	�. �	

����					
����	�. �	ℎℎ����∗

1. Dep. of Mathematics, College of Sciences, AL-Mustansiriyah University, Baghdad,Iraq.
2. Dep. of statistics, College of Adm. and Econ., University of sumar, Alrefiey,Iraq.

Abstract
In this paper, we introduce a novel approach based on modified artificial neural network and optimization
teqnique to solve partial differential equations. Using modified artificial neural network makes that training
points should be selected over an open interval without training the network in the range of first and end points.
Therefore, the calculating volume involving computational error is reduced. In fact, the training points
depending on the distance selected for training neural network are converted to similar points in the open interval
by using a new approach, then the network is trained in these similar areas. In comparison with existing similar
neural networks proposed model provides solutions with high accuracy. The proposed method is illustrated by
two numerical examples.
Keywords: Partial differential equation, Modified neural network, Feed-forward neural network,BFGS
Teqnique, Hyperbolic tangent activation function.

1.Introduction
Differential equations are used as a powerful tool in solving many problems in various fields of human
knowledge, such as physics, chemistry, mechanics, economics, etc. one application of the differential equation is
turning problems and natural phenomena into differential equations, then by solving the DE the answer is
described and the phenomena are calculated. Usually many of these problems do not have analytical solutions or
their solution may have certain implications. Many researchers have tried to approximate the solutions of these
equations and proposed a lot of algorithms such as: predictor-corrector, Runge-Kutta, finite difference, finite
element and other methods. In recent years artificial neural networks for estimation of the ordinary differential
equation (ODE) and partial differential equation (PDE) have been used. lee and Kang (1990) used parallel
processor computers to solve a first order differential equation with Hopfield neural network models. Meade and
Fernandez (1994) solved linear and non-linear ODE by using feed-forward neural networks architecture and B-
splines of degree one. Lagaris, Likas & Fotiadis (1998) used artificial neural network for solving ODEs and
PDEs with the initial / boundary value problems. In comparison with jammes and Liu (Liu & Jammes 1999),
malek and shekari presented numerical method based on neural network and optimization techniques which the
higher-order DE answers approximates by finding a package form analytical of specific functions (Malek &
Shekari 2006) which is a combination of two terms:
The first term is related to the initial / boundary condition and the second term contains parameters related to the
neural network, the used neural network is a two-layer network with one hidden layer and the activation function
used in the hidden layer is a sigmoid function or hyperbolic tangent function. During the past few years, the
numerical solutions of ODEs and PDEs by using artificial neural network have been studied by several authors
(Ahmed & Bilal 2014, Biglari,Assareh , Poultangari & Nedaei 2013, Baymani,Kerayechian & Effaati 2010,
Ghalambaz,Noghrehabadi,Behrang,Assareh,Ghanbarzad & Hedayat 2011 , Ibraheem & Khalaf 2011,Jalab ,
Ibrahim ,Murad,Mulhum & Hadid 2012, Tawfiq & Al-Abrahemee 2014, Putcha & Deepika 2013, Pattanaik &
Mishra 2008, Parand,Roozbahani & Babolghani 2013, Wu & Hsu 2012 Yazdi,Pakdaman & Modaghegh 2011).
In this paper we view the problem from a different angle. We present a modified method for solving partial
differential equations (PDE's) that relies on the function approximation capabilities of feed forward neural
networks and results in the construction of a solution written in a differentiable, closed analytic form. This form
employs a feed forward neural network as the basic approximation element, whose parameters (weights and
biases) are adjusted to minimize an appropriate error function. To train the ANN which we design, we employ
optimization techniques, which in turn require the computation of the gradient of the error with respect to the
network parameters. In the proposed approach the model function is expressed as the sum of the two terms: the
first term satisfies the initial / boundary conditions and contains no adjustable parameters. The second term can
be found by using feed forward neural network(FFNN), which is trained so as to satisfy the differential equation.
Since it is known that a multilayer FFNN with one hidden layer can approximate any function to arbitrary
accuracy, thus our ANN contains one hidden layer.
This modified method is called modified artificial neural network(MANN) for solving ordinary and partial
differential equations. This new method based on replaced every x in the training set (where x ∈ �a, b�) by the
polynomial Q (x) = � (x + 1) such that Q (x) ∈ (a, b) by choosing a suitable � ∈ (0	, 1). In this paper, we will
illustrate this modified method by solving !" numerical examples and we will introduce a comparison between

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

12

our results and a results which are calculated by other numerical methods such as finite element method.
2. Artificial Neural Network
 An Artificial neural network (ANN) is a simplified mathematical model of the human brain, it can be
implemented by both electric elements and computer software. It is a parallel distributed processor with large
numbers of connections, it is an information processing system that has certain performance characters in
common with biological neural networks. ANN have been developed as generalizations of mathematical models
of human cognition or neural biology, based on the assumptions: 1. lnformation processing occurs at many simple elements called neurons that is fundamental the operation of
ANN's. 2. Signals are passed between neurons over connection links. 3. Each connection link has an associated weight which, in a typical neural net, multiplies the signal transmitted. 4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals)
to determine its output signal.
There are two main connection formulas (types):feedback(recurrent) and feed-forward connections.Feedback is
one type of connection where the output of one layer routes back to the input of a previous layer , or to the same
layer.Feed-forward neural network(FFNN) does not have a connection back from the output to the input
neurons(Fig.1).There are many different training algorithms, but the most often used training algorithm is the
back propagation(BP)rule.ANN is trained to map a set of input data by iterative adjusment of the
weights.Information from inputs is feedforward through the network to optimize the wieghts between neurons.
Optimization of the wieghts is made by backward propagation of the error during training phase.The ANN reads
the input and output values in the training data set and changes the value of the wieghted links to reduce the
difference between the predicted and target(observed)values.The error in prediction is minimized across many
training cycles(iteration or epoch) until network reaches specified level of accuracy.A complete round of forward
backward passes and wieght adjusments using all input output pairs in the data set is called an epoch or iteration.
In order to perform a supervised training we need a way of evaluating the ANN output error between the actual
and the expected outputs .A popular measure is the mean squared error (MSE) or root mean squared
error(RMSE) (Tawfiq 2004, Tawfiq & Al-Abrahemee 2014) &. Description of The Method
 In this section we will illustrate how our approach can be used to find the approximate solution of the general
form a second order differential equation(Lagaris,Likas & Fotiadis 1998):
 G'x()	, Ψ(x())	, ∇	Ψ(x())	, ∇�	Ψ(x()), = 0 , x() ∈ D (1)
Where a subject to certain boundary conditions (BCʼs) or initial conditions (ICʼs) (for instance Dirichlet and / or
Neumann conditions) and x() = (x1	, x2	, …… , xn) ∈ Rn , D ⊂ Rn denotes the domain and Ψ(x()) is the solution to be
computed.
To obtain a solution to the above differential equation, the collocation method is adopted which assumes a
discretization of the domain D and its boundary S into a set points D4 and S5, respectively. The problem is then
transformed into the following system of equations:
G'x()6	, Ψ(x()6)	, ∇	Ψ(x()6)	, ∇�	Ψ(x()6), = 0 , ∀	x()6 ∈ D4 (2)
Subject to the constraints imposed by the BCʼs or ICʼs.
If Ψ8 (x()	, p()) denotes a trial solution with adjustable parameters p(), the problem is transformed to a discretize form
Min

p() ∑ 	:G'x()6Ψ8(x()6, p()), ∇Ψ8(x()6, p()), ∇�Ψ8(x()6, p()),;�<()=	∈	>4 (3)

Subject to the constraints imposed by the BCʼs or ICʼs.
In the our proposed approach, the trial solution Ψ8 employs a feed forward neural network and the parameters p()
correspond to the weights and biases of the neural architecture. We choose a form for the trial function Ψ8(x())
such that it satisfies the BCʼs or ICʼs. This is achieved by writing it as a sum of two terms.
 Ψ8(x()) =A(x())+ F'x()	, N(x()	, p()), (4)
Where N(x()	, p()) is a single-output feed forward neural network with parameters p() and n input units fed with the
input vector x().
The term A(x()) contains no adjustable parameters and satisfies the boundary conditions. The second term F is
constructed so as not to contribute to the BCʼs or ICʼs, since Ψ8(x()) satisfy them. This term can be formed by
using a ANN whose weights and biases are to be adjusted in order to deal with the minimization problem
(Lagaris,Likas & Fotiadis 1998).
Our numerical result shows that our approach, which based on the above formulation is very effective and can be
done in reasonable computing time to compute an accurate solutions. ?. Computation of The Gradient
An efficient minimization of (3) can be considered as a procedure of
training the ANN, where the error corresponding to each input vector x()6 is the value E(x()6) which has to forced

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

13

near zero. Computation of this error value involves not only the ANN output (as is the case in conventional
training) but also the derivatives of the output with respect to any of its inputs. Therefore, in computing the
gradient of the error with respect to the network weights (Tawfiq 2004).
Consider a multilayer FFNN with n input units, one hidden layer with H sigmoid units and a linear output unit.
The extension to the case of more than one hidden layers can be obtained accordingly.
For a given input vector x() = (x1	, x2	, … , xn) the output of the ANN is:
 N = ∑ v6	s(z6)B6C� , where z6 = ∑ w6E 	xE + b6nEC� w6E denotes the weight connecting the input unit F to the hidden unit i, v6 denotes the weight connecting the hidden unit i to the out put unit, b6 denotes the bias of hidden unit i, and s(z) is the hyperbolic tangent activation function.
The gradient of ANN, N with respect to the parameters of the ANN can be easily obtained as:

HNHI= = s(z6) (5)

HNHJ= = v6 s´(z6) (6)

HNHL=M = v6 s´(z6)xE (7)

Once the derivative of the error with respect to the network parameters has been defined, then it is a straight
forward to employ any minimization technique and we will use BFGS quasi-Newton method . N. Illustration of The Method
We will consider a two - dimensional problems. However, it is
straightforward to extend the method to more dimensions.
For example, consider the Poisson equation (Lagaris,Likas & Fotiadis 1998):

OPQ(<	,R)O<P +

OPQ(<	,R)ORP = f(x	, y) (8)

x ∈ �0	, 1� , y ∈ �0	, 1� with Dirichlet BC: Ψ(0	, y) = f0(y) , Ψ (1	, y) = f1(y) , Ψ(x	, 0) = g0
(x) and Ψ (x	, 1) = g1

(x) , where f0 , f1 , g0 and g1 are
continuous function.
The trial solution is written as Ψ8 (x	, y) = A(x	, y) + x(1 − x) y(1 − y) N(x	, y, p()) (9)
Where A(x	, y) is chosen so as to satisfy the BC, namely:
A(x	, y) = (1 − x) f0(y) + x f1(y) + (1 − y) Vg0

(x) −	 W(1 − x)	g0
(0) + 	xg0

(1)YZ + yVg1
(x) − 	W(1 − x)	g1

(0) +	xg1
(1)YZ (10)

For mixed boundary conditions of the form: Ψ(0	, y) = f0(y), Ψ(1	, y) = f1(y), Ψ(x	, 0) = g0
(x) and ([Ψ(x	, 1)/[y) = g1

(x)
(i.e., Dirichlet on part of the boundary and Neumann elsewhere), the trial solution can be written as Ψ8(x	, y) = B(x	, y) + x(1 − x)y�N(x	, y, p()) − 	N(x	, 1, p()) − 	[N(x	, 1, p())/[y�
(11)
And B(x	, y) is again chosen so as to satisfy the BCʼs:
B(x	, y) = (1 − x)f0(y) + x f1(y) + g0

(x) − 	 W(1 − x)	g0
(0) + 	xg0

(1)Y + yVg1
(x) −	 W(1 − x)	g1

(0) + 	xg1
(1)YZ

(12)
Note that the second term of the trial solution does not affect the boundary conditions since it vanishes at the
part of the boundary where Dirichlet BCʼs are imposed and its gradient component normal to the boundary
vanishes at the part of the boundary where Neumann BCʼs are imposed. In all the above PDE problems the error
that should be minimized is given by:

E�p()� = ∑]OPQ^(<=,R=)	O<P 	+	 OPQ^(<=,R=)ORP − 	f(x6	, y6)`�a6C� (13)

Where (x6, y6) are points in �0,1� × �0,1� (Tawfiq 2004). b. Proposed Method
 In this section we will introduce a novel method to modify the artificial neural network ANN . This new
method based on replaced every x in the input vector (training set) x() = (x1	, x2	, …… , xn) , xE ∈ �a, b� by a
polynomial of degree one. Ezadi and parandin (2013) used the function:
 Q(x) = � (x + 1) , � ∈ (0,1) (14)
Then the input vector will be: (Q(x�)	,	Q(x�) , …… Q(xa)) , Q(xE) ∈ (a	, b) In this paper, we named this
proposed method modified artificial neural network (MANN). Using modified artificial neural network makes
that training points should be selected over the open interval (a	, b) without training the neural network in the
range of first and end points. therefore, the calculating volume involving computational error is reduced. In fact,

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

14

the training points depending on the distance �a	, b� selected for training neural network are converted to similar
points in the open interval (a	, b) by using a new approach, then the network is trained in these similar areas.
From above, we have: for a given input vector (x1	, x2	, …… , xn) , xE ∈ �a, b�, the output of the modified artificial
neural network is:
 N = ∑ v6B6C� 	s	(z6) , where z6 = ∑ W6E 	Q(xE) + b6nEC� (15)
and Q(xE) = � (xE + 1), � ∈ (0,1) and xE ∈ �a	, b�, then Q(xE) ∈ (a	, b)
Note that, equations (5	_	7) will be: HNHI= = s'W6E 	Q(xE) + b6, = s'�	(xE + 1)	W6E + b6, (16) HNHJ= = v6 s´'W6E 	Q(xE) + b6, = v6 s´'�	(xE + 1)	W6E + b6, (17) HNHL=M =v6 Q (xE) s´'W6E 	Q(xE) + b6,=v6 Q(xE) s´'�	(xE + 1)	W6E + b6, (18) where s´ is the first derivative of

the hyperbolic tangent function. h. Solution of Partial Differential Equations
 We will consider boundary value problems partial differential equation with Dirichlet conditions or Neumann
conditions. All the subsequent problems were defined on the domain [0,1] × [0,1] and in order to perform
training we consider a mesh points obtained by considering ten equidistant points of the domain [0,1] of each
variable. In analogy with the previous cases the neural network archilecture was considered to be FFNN with
two inputs (accepting the coordinates x and y of each point), 10 hidden units and one linear output unit (Fig.1).
For every entries x and y , the input neurons makes no changes in its inputs, so the input to the hidden neurons is:
 NetE = x	wE� + y	wE� + BE , F = 1,2,……,m (19)
Where wE� and wE� are a weights from the input layer to the Fth unit in the hidden layer, BE is an Fth bias for the Fth unit in the hidden layer. The output in the hidden neurons is :
 ZE = s(netE) , F = 1,2,……,m. (20)
The output neuron make no changes in its input, so the input to the output neuron is equal to output: N = ∑ VE 	ZEmEC� . …(21)
• For MANN, eq.(19) will be:
 netE = Q(x) wE� + Q(y) wE� + BE = �(x+1) wE� + �(y+1) wE� + BE (22) ZE = s(�(x+1) wE� + �(y+1) wE� + BE) (23)
 N = ∑ VEmEC� s(�(x+1) wE� + �(y+1) wE� + BE) (24)
Where F = 1,2,……,m , � ∈ (1,0) and Q(x) , Q(y) ∈ (a, b)
8. Numerical Examples
 In the section we report some numerical results and the solution of a number of model problems. In all cases
we used a three-layer FFNN having two input units, one hidden layer with 10 hidden units (neurons) and one

output unit, and hyperbolic tangent activation function, that is: s(x) =
kl	m	knlkl	o	knl . For each test problem, the

analytical solution uq(x()) was known in advance, therefore we test the accuracy of the obtained solutions by
computing the deviation: ∆u(x()) = su8(x()) -	uq(x())s (25)
We will use BFGS quasi-Newton method to minimize the error function. Also, we will introduce a comparison
between the usual artificial neural network(UANN) and the modified artificial neural network(MANN) by using
a numerical results in other references .
Example (8.1): Consider the boundary value problem:

HPuH	xP +

HPuH	yP = 0 , x, y ∈ �0,1�
With the Dirichlet boundary conditions: u(0, y) = 0 , u(1, y) = 0 , u(x, 0) = 0 and u(x, 1) = sin tx .

the analytical solution is: uq(x, y) =
u6av<	u6awvRu6awv .

By using (9), the trial solution has the form: u8(x, y) = y	sin	πx + xy 'x - 1, 'y - 1, N (x	, y, p).
To find the error function E that must be minimized we calculate: HPz^(<,R)H	xP = -t�y sin	tx + (y�- y) {'x�-x, HPNH	xP +'4x-2, HNHx

+2N| (26) HPz^(<,R)H	yP = 'x�-x, {'y�-	y, HPNH	yP +'4y-2, HNHy
+2N| (27)

By using eq. (13), we have:

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

15

E(p) = ∑ 	��6C�

���
���
�-π�y6 sin πx6 + 'y6�-	y6, �'x6�-x6, OP�(<=	,R=,�)O	<P � + '4x6	–	2,

	O�(<=	,R=,�)O< + 2N(x6	, y6, p) + 'x6�-x6,
�'y6�-	y6, OP�(<=	,R=,�)O	RP + '4y6-	2, O�(<=	,R=,�)O< +2N(x6	, y6, p)����

���
��

 (28)
For eq. (21), we have: N(x	, y, p) = ∑ v�	s	'x	wE�+	y	wE� +	BE,��EC� (29) H	�(<	,R,�)H< = ∑ vE 	wE�	s´��EC� 'x	wE�+	y	wE� +	BE, (30) HP	�(<	,R,�)H<P = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	y	wE� +	BE, 																									(31) H	�(<	,R,�)HR = ∑ vE 	wE�	s´��EC� 'x	wE�+	y	wE� +	BE, (32) HP	�(<	,R,�)HRP = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	y	wE� +	BE, (33)
By substitute (29 – 33) in (28) , we have:

E = ∑ 	��6C�

��
��
��
�� -π�y6 sin πx6 + 'y6�-	y6,	('x6�-x6,∑ vE 	wE�� 	��EC�s´´'x6	wE�+	y	wE� +	BE, + '4x6-	2,∑ vE 	wE�	��EC�s´'x6	wE�+	y	wE� +	BE,	+2∑ vE 	s	'x6	wE�+	y6	wE� +	BE,)��EC�

+'x6�-x6,('y6�-	y6, ∑ vE 	wE�� 	s´´��EC� 'x6	wE�+	y6	wE� +	BE,
+ '4y6-	2,∑ vE	wE�	s´��EC� 'xi 	wE�+	y6	wE� +	BE, + 2∑ vE 	s	'x6	wE�+	y6	wE� +	BE,��EC�) ��

��
��
��
�

 (34)
Then one can use (34) to adjust the weights and biases with respect to usual artificial neural network(UANN).
• For MANN : in the same way, we have:

E = ∑ 	��6C�

���
���
���
� -π�y6 sin πx6 + 'y6�-	y6,	('x6�-x6,∑ vE 	wE�� 	��EC� s´´'Q(x6)	wE�+	Q(y6)	wE� +	BE, + '4x6-	2,∑ vE 	wE�s´	��EC�'Q(x6)	wE�+	Q(y6)	wE�+BE,+2∑ vEs	��EC�'Q(x6)	wE�+	Q(y6)	wE� +	BE,)+'x6�-x6,('y6�-	y6,∑ vE 	wE�� 	s´´��EC� 'Q(x6)	wE�+	Q(y6)	wE� +	BE,+ '4y6-	2,∑ vE 	wE�	s´��EC� 'Q(x6)	wE�+	Q(y6)	wE� +	BE, + 2∑ vE 	s	'Q(x6)	wE�+	Q(y6)	wE� +	BE,��EC�) ���

���
���
��

 (35)

We use (35) to adjust the weight and biases w. r. t. MANN.
Since x		, y ∈ �0,1� , then Q(x) , Q(y) ∈ (0,1) and since Q(x) = �(x+1) , Q(y) = �(y+1) , then we must choose � < 0.5. for � = 0.4 , the training set will be:
 x		: 0 0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1
 y : 0 0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1
Q(x): 0.4			0.44		0.48		0.52		0.56		0.6				0.64		0.68		0.72		0.76		0.8
Q(y): 0.4			0.44		0.48		0.52		0.56		0.6				0.64		0.68		0.72		0.76		0.8
Also , we solved this example by using usual artificial neural network, these result can be found in table (1).
Analytical and trial solutions for this problem can be found in table (1) and figures (2) and (3) .
Example (�. �): Consider the non-linear PDE: HPuH	xP +

HPuH	yP + u
H uH	y = sin πx '2 - π�y�+	2y� sin πx,,

Where x, y ∈ �0,1� and with mixed boundary conditions:

u(0,y) = 0 , u(1,y) = 0, u(x , 0) = 0,
H uH	y (x,1) = 2 sin πx.

The analytical solution for this problem is: ua	(x, y) = y� sin πx.
By using (11 and 12) , the trial solution has the form: u8(x, y) = 2y sin πx + xy (1 - x) {N(x	, y, p)-	N(x	, 1, p)-	 H	�(<	,�,�)HR | (36)

From (36), we can find:

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

16

HPz^(<,R)H	xP = - 2π�	y sin πx + y'x - x2, :HP	�(<	,R,�)H<P -
HP	�(<	,�,�)H<P -

H�	�(<	,�,�)HR	Hx Hx
;

+ 2y(1-2x):H	�(<	,R,�)H< -
H	�(<	,�,�)H< -

HP	�(<	,�,�)HR	Hx
; − 2y :N(x	, y, p) − 	N(x	, 1, p) − H	�(<	,�,�)HR ; (37) H	z^(<	,R)HR = 2 sin πx + 'x - x2, :y H	�(<	,R,�)HR +N(x	, y, p) 	− 	N(x	, 1, p) − H	�(<	,�,�)HR ; (38) HP	z^(<	,R)HRP = 'x - x2, :y HP	�(<	,R,�)HRP +2 H	�(<	,R,�)HR ; (39)

Form eq. (13) , we have:
E=

∑

��
��
��
��
��
��
��
� −2π�	y6 sin πx6 +	y6'x6	– 	x6�,:HP	�(<=	,R=,�)H<P − HP	�(<=	,�,�)H<P − H�	�(<=	,�,�)HR	H<	H< ; 	+ 	2y6	(1 − 2x6):H	�(<=	,R=,�)H< − H	�(<=	,�,�)H< − HP	�(<=	,�,�)HR	H<	 ; 	− 	2y6:N(x6	, y6, p)– N(x6	, 1, p)	– H	�(<=,�,�)HR ; + 'x6	– 	x6�,:y6 HP	�(<=	,R=,�)HRP + 2 H	�(<=	,R=,�)HR ; 	+
�2y6 sin πx6+ y6'x6	– 	x6�, :N(x6	, y6, p)– N(x6	, 1, p)- H	�(<=,�,�)HR ;� ∗
�2 sinπxi +'xi–xi

2, :yi

∂N'xi , yi ,p,
∂y

+N'xi , yi ,p,–N(xi ,1,p)- ∂N(xi , 1,p)
∂y

;�− sin πx6 (2 − π�y6� + 2y6� sin πx6) ��
��
��
��
��
��
��
�

��6C�

�

(40)
Where : N(x, 1, p) = ∑ vE	s	'x	wE�+	wE� +	BE,��EC� (41) H	�(<	,�,�)H< = ∑ vE 	wE�	s´��EC� 'x	wE�+	wE� +	BE, (42) HP	�(<	,�,�)H<P = ∑ vE 	wE�� 	s´´��EC� 'x	wE�+	wE� +	BE, (43) H	�(<	,�,�)HR = ∑ vE 	wE�	s´��EC� 'x	wE�+	wE� +	BE, (44) HP	�(<	,�,�)Hy	Hx

 = ∑ vEwE�	wE�	s´´��EC� 'x	wE�+	wE� +	BE, (45) H�	�(<	,�,�)HR	Hx Hx
 = ∑ vE 	wE�� wE�	s´´´��EC� 'x	wE�+	wE� +	BE, (46)

• For MANN : in the same way, we have:

E= ∑

��
���
���
���
���
���
� −2π�	y6 sin πx6 +	y6'x6	–	x6�,	:HP	�(�(<=),�(R=),�)H<P − HP	�(�(<=),�,�)H<P − H�	�(�(<=),�,�)HR	H<	H< ; + 2y6(1 − 2x6):H	�(�(<=),�(R=),�)H< − H	�(�(<=),�,�)H< − HP	�(�(<=),�,�)HR	H<	 ; 	− 	2y6:N(Q(x6), Q(y6), p)– N(Q(x6), 1, p) − H	�(�(<=),�,�)HR ; + 'x6	– 	x6�,:y6 HP	�(�(<=)	,�(R=),�)HRP + 2 H	�(�(<=),�(R=),�)HR ;+

�2y6 sin πx6+ y6'x6	– 	x6�,	�N(Q(x6)	, Q(y6), p)–N(Q(x6), 1, p)-H	�(�(<=),�,�)HR �� ∗
	�2 sin πx6 +'x6	– 	x6�,�y6 H	�(�(<=),�(R=),�)HR +N(Q(x6)	, Q(y6), p)–N(Q(x6), 1, p)- H	�(�(<=),�,�)HR �� −

sin πx6 (2 − π�y6� + 2y6� sin πx6) ��
���
���
���
���
���
��

��6C�

 (47)
 where

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

17

N(Q(x), 1, p) = ∑ vE 	s	'Q(x)	wE�+	wE� +	BE,��EC� (48) H	�(Q(<)	,�,�)H< = ∑ vE 	wE�	s´��EC� 'Q(x)	wE�+	wE� +	BE, (49) HP	�(Q(<)	,�,�)H<P = ∑ vE 	wE�� 	s´´��EC� 'Q(x)	wE�+	wE� +	BE, (50) H	�(Q(<)	,�,�)HR = ∑ vE 	wE�	s´��EC� 'Q(x)	wE�+	wE� +	BE, (51) HP	�(Q(<)	,�,�)Hy	Hx
 = ∑ vEwE�	wE�	s´´��EC� 'Q(x)	wE�+	wE� +	BE, (52) H�	�(Q(<)	,�,�)HR	Hx Hx
 = ∑ vE 	wE�� wE�	s´´´��EC� 'Q(x)	wE�+	wE� +	BE, (53)

Then we can use (47) to update the weights and biases w. r. t. MANN.
Since x, y ∈ �0,1� , then Q(x) , Q(y) ∈ (0,1). Therefore, we must choose � < 0.5. for � = 0.2, the training set will
be:
 x: 0 0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1
 y: 0 0.1					0.2				0.3					0.4				0.5				0.6					0.7				0.8					0.9				1
Q(x): 0.2			0.22		0.24		0.26		0.28		0.3				0.32		0.34		0.36		0.38		0.4
Q(y): 0.2			0.22		0.24		0.26		0.28		0.3				0.32		0.34		0.36		0.38		0.4
 Lagaris,Likas & Fotiadis(1998) solved this problem by using UANN, the maximum deviation in these result ≈ 0.000015, we compared this absolute error with the absolute error which we found by using MANN. Analytical
and trial solutions for this problem can be found in table (2) and figures (4) and (5) . �. Results and Discussion
From the numerical examples in this work , it is clear that the modified artificial neural network gives best
results and better accuracy in comparison with usual artificial neural network . We can conclude that the method
we propused can handle effectively all types of partial differential equations and provide accurate approximate
solution throughout the whole domain and not only at the training set. Therefore, one can use the interpolation
techniques (such as curve fitting method) to find the approximate solution at points between the training points
or at points outside the training set.
Table(3)reports the maximum and minimum absolute error corresponding to the MANN and to the UANN .
Note that for example (8.2), Lagaris, Likas & Fotiadis (1998) they had compared the results obtained with the
result that found by using the finite element method which has been widely acknowledged as one of the most
effective approaches to find the approximate solutions of differential equations. The maximum absolute error by
using FEM is 0.0000006, this result is better than that obtained by using the MANN which is 0.0000024, but we
must Note that the accuracy of the MANN method can be controlled by increasing the number of hidden units or
expansion the training set.
10. Conclusion
 In this paper, we presented a hybrid approach based on modified artificial neural networks for solving partial
differential equations. We demonstrate, for the first time, the ability of modified artificial neural networks to
approximate the solutions of PDEs . The main reason for using modified artificial neural networks was their
applicability in function approximation. Further research is in progress to apply and extend this method to solve
three-dimensional partial differential equations and integral equations .

References
Ahmed,I. & Bilal ,M.(2014)," Numerical Solution of Blasius Equation Through Neural Networks Algorithm

" , American Journal of Computational Mathematics,4,223-232.
Biglari ,M. , Assareh,E. , Poultangari ,I. & Nedaei ,M. (2013) ," Solving Blasius Differential Equation by

Using Hybrid Neural Network and Gravitational Search Algorithm (HNNGSA)",Global Journal of
Science , Engineering and Technology,11,29-36.

Baymani, M., Kerayechian, A. & Effaati ,A.(2010),"Artificial Neural Networks Approach for Solving Stokes
Prpblem ", Applied Mathematics,1,288-292.

 Ezadi,S. & Parandin,N.(2013),"An Application of Neural Networks to Solve Ordinary Differential
Equations",International Journal of Mathematical Modelling & Computations,3(3),245-252.

Ghalambaz,M.,Noghrehabadi,A.R.,Behrang,M.,Assareh,E.,Ghanbarzad,A. & Hedayat , N. (2011) , " A Hybrid
Neural Network and Gravitational Search Algorithm (HNNGSA) Method to Solve Well Known
Wessinger̛s Equation", World Academy of science,Engineering and Technology,5,1-21.

Ibraheem,K.I. & Khalaf,B.M.(2011),"Shooting Neural Networks Algorithm for Solving Boundary Value
Problems in ODEs",Applications and Applied Mathematics:An International Journal(AAM),11,1927-
1941.

Jalab , H. A. Ibrahim , R.W., Murad , S .A . , Mulhum ,A.I. & Hadid, S. B. (2012)," Numerical Solution of
Lane-Emden Equation Using Neural Network" , International Conference on Fundamental and

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

18

Applied Sciences,1482,414-418.
Liu,B. & Jammes ,B.(1999)," Solving Ordinary Differential Equations by Neural Networks", in:Proceeding of

13th European Simulation Multi- Conference Modelling and Simulation: A Tool for the Next
Millennium , Warsaw,Poland,June 14.

Lee,H. & Kang,I.S.(1990),"Neural Algorithms for Solving Differential Equations", Journal of Computational
Physics,91,110-131.

 Lagaris,I.E.,Likas,A. & Fotiadis ,D.I.(1998)," Artificial Neural Networks for Solving Ordinary and Partial
Differential Equations",IEEE Transactions on Neural Networks,9(5),987-1000.

 Meade,A.J. & Fernandez,A.A.(1994),"Solution of Linear Ordinary Differential Equations By Feed-Forward
Neural Networks",Mathematical and Computer Modelling,19(12),1-25.

Meade,A.J. & Fernandez,A.A.(1994),"Solution of Non-Linear Ordinary Differential Equations By Feed-Forward
Neural Networks",Mathematical and Computer Modelling,20(9),19-44.

Malek,A. & Shekari,R.(2006),"Numerical Solution for High Order Differential Equations,Using a Hybrid Neural
Network Optimization Method",Applied Mathematics and Computation,183,260-271.

Putcha,V.S. & Deepika,G.V.(2013),"Continuous Lyapunov Dynamical Systems-Artificial Neural Network
Approach",International Journal of Differential Equations and Applications,12(4),139-149.

Pattanaik,S. & Mishra,R.K.(2008),"Application of ANN for Solution of PDE In RF Engineering",International
Journal on Information Sciences and Computing,2(1),74-79.

Parand,K.,Roozbahani,Z. & Babolghani , F.P.(2013), "Solving Non-Linear Lane-Emden Type Equations With
Unsupervised Combined Artificial Neural Networks", International Journal Industrial
Mathematics,5(4),355-366.

Tawfiq,L.N.M.(2004),"On Design and Training of Artificial Neural Networks for Solving Differential
Equations".PH.D Thesis,52-65.

Tawfiq,L.N.M. & Al-Abrahemee,K.M.M.(2014),"Design Neural Network to Solve Singular Perturbation
Problems",Applied & Computational Mathematics,3.

 Wu,S.L. & Hsu,C.H.(2012),"Entire Solutions of Non-Linear Cellular Neural Networks With Distributed Time
Delays",Nonlinearity, 25,2785-2801.

Yazdi,H.S.,Pakdaman,M. & Modaghegh,H.(2011), " Unsupervised Kernal Least Mean Square Algorithm for
Solving Ordinary Differential Equations",Neurocomputing ,74,2062-2071.

Figure 1. (2 x m x 1) Feed-forword neural network.

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

19

Figure 2. Analytical and trial solutions for example(8.1), for x = 2.5 and y	∈[2,3].

Figure 3. Analytical and trial solutions for example(8.1), for y = 1.5 and x	∈[1.5,2.5].

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

20

Figure 4. Analytical and trial solutions for example(8.2), for x = 2.2 and y	∈[1.5,2.5].

Figure 5. Analytical and trial solutions for example(8.2), for y = 2.2 and x	∈[2.5,3.5].

Network and Complex Systems www.iiste.org

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online)

Vol.5, No.6, 2015

21

Table 1. Numerical results for example (8.1).

x y ua (x,y) by UANN
ut (x,y)

error by MANN ut
(x,y)

error

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.008537828
0.034097183
0.076183058
0.132865960
0.199152886
0.264808483
0.311834910
0.312025528
0.225309818

0

0
0.008525483
0.034074725
0.076231065
0.132947134
0.198921655
0.264353083
0.311176780
0.312814326
0.225765479

0

0
0.000012345
0.000022458
0.000048007
0.000081174
0.000231231
0.000455400
0.00065813
0.000788798
0.000455661

0

0
0.008537786
0.034097144
0.076183619
0.132866552
0.199153514
0.264809191
0.311835847
0.312019907
0.225305948

0

0
0.000000042
0.000000039
0.000000561
0.000000592
0.000000628
0.000000708
0.000000937
0.000005621
0.000003870

0

Table 2. Numerical results for example (8.2)
x y ua (x,y) ut (x,y) error
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.003090169
0.02351141
0.072811529
0.152169042
0.250000000
0.342380345
0.396418327
0.376182561
0.250303765

0

0
0.003087756
0.023509708
0.072812021
0.152169553
0.250000873
0.342379432
0.396418379
0.37618252
0.250304127

0

0
0.000002413
0.000001702
0.000000492
0.000000511
0.000000873
0.000000913
0.000000052
0.000000041
0.000000361

0

Table 3. Maximum and minimum deviation from the analytical solution for the MANN and the UANN .

Example
No.

 Max. error Min. error by Max. error Min. error by

8.1.
8.2.

0.000005621
0.000002413

0.000000039
0.000000041

MANN
MANN

0.000788798
0.000015000

0.000012345
0.00000100

UANN
UANN

The IISTE is a pioneer in the Open-Access hosting service and academic event management.

The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:

http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following

page: http://www.iiste.org/journals/ All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than those

inseparable from gaining access to the internet itself. Paper version of the journals is also

available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

