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Abstract

In this paper, we introduce a novel approach basednodified artificial neural network and optimiizat
tegnique to solve partial differential equationssing modified artificial neural network makes thedining
points should be selected over an open intervahowt training the network in the range of firsdand points.
Therefore, the calculating volume involving compiataal error is reduced. In fact, the training psin
depending on the distance selected for trainingateetwork are converted to similar points in tpen interval
by using a new approach, then the network is tchinghese similar areas. In comparison with exgssimilar
neural networks proposed model provides solutioitls high accuracy. The proposed method is illustidby
two numerical examples.

Keywords. Partial differential equation, Modified neural twerk, Feed-forward neural network,BFGS
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L.Introduction

Differential equations are used as a powerful timolsolving many problems in various fields of human
knowledge, such as physics, chemistry, mechanicsiamics, etc. one application of the differengiguation is
turning problems and natural phenomena into difféaé equations, then by solving the DE the ansiger
described and the phenomena are calculated. Usualty of these problems do not have analyticaltewsis or
their solution may have certain implications. Maegearchers have tried to approximate the solutibnisese
equations and proposed a lot of algorithms suchpaedictor-corrector, Runge-Kutta, finite differendinite
element and other methods. In recent years adiifi@@ural networks for estimation of the ordinaiffedential
equation (ODE) and partial differential equatio™f) have been used. lee and Kang (1990) used @arall
processor computers to solve a first order diffeatequation with Hopfield neural network modeé¥éeade and
Fernandez (1994) solved linear and non-linear OPEINg feed-forward neural networks architecturd 8-
splines of degree one. Lagaris, Likas & Fotiadi998) used artificial neural network for solving O®&nd
PDEs with the initial / boundary value problems.comparison with jammes and Liu (Liu & Jammes 1999)
malek and shekari presented numerical method basedural network and optimization techniques whidh
higher-order DE answers approximates by findingaakpge form analytical of specific functions (Mal&k
Shekari 2006) which is a combination of two terms:

The first term is related to the initial / bounda&gndition and the second term contains paramettated to the
neural network, the used neural network is a twedaetwork with one hidden layer and the activafionction
used in the hidden layer is a sigmoid function gpdrbolic tangent function. During the past few rgedhe
numerical solutions of ODEs and PDEs by usingieidif neural network have been studied by seveantias
(Ahmed & Bilal 2014, Biglari,Assareh , Poultang&iNedaei 2013, Baymani,Kerayechian & Effaati 2010,
Ghalambaz,Noghrehabadi,Behrang,Assareh,Ghanbarzatkdaayat 2011 , Ibraheem & Khalaf 2011,Jalab ,
Ibrahim ,Murad,Mulhum & Hadid 2012, Tawfiq & Al-ABhemee 2014, Putcha & Deepika 2013, Pattanaik &
Mishra 2008, Parand,Roozbahani & Babolghani 2018 &WHsu 2012 Yazdi,Pakdaman & Modaghegh 2011).
In this paper we view the problem from a differanigle. We present a modified method for solvingtigla
differential equations (PDE's) that relies on tlhmction approximation capabilities of feed forwamdural
networks and results in the construction of a smhutvritten in a differentiable, closed analytiarfo This form
employs a feed forward neural network as the bapfroximation element, whose paramefevsights and
biase3 are adjusted to minimize an appropriate errortionc To train the ANN which we design, we employ
optimization techniques, which in turn require ttamputation of the gradient of the error with respe the
network parameters. In the proposed approach tldeifionction is expressed as the sum of the twmgethe
first term satisfies the initial / boundary condits and contains no adjustable parameters. Thexddeon can
be found by using feed forward neural network(FFNMich is trained so as to satisfy the differdraiguation.
Since it is known that a multilayer FFNN with on&den layer can approximate any function to arbjtra
accuracy, thus our ANN contains one hidden layer.

This modified method is called modified artificiabural network(MANN) for solving ordinary and paiti
differential equations. This new method based qtame=d every x in the training sgthere xe [a,b]) by the
polynomial Q(x) =€ (x + 1) such that @x) € (a,b) by choosing a suitabkee (0, 1). In this paper, we will
illustrate this modified method by solvirmgro numerical examples and we will introduce a congmaribetween
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our results and a results which are calculatedtbgranumerical methods such as finite element ateth
2. Artificial Neural Network

An Artificial neural networklANN) is a simplified mathematical model of the humarifr it can be
implemented by both electric elements and compsdéwvare. It is a parallel distributed processcthwarge
numbers of connections, it is an information preoes system that has certain performance charaaters
common with biological neural networks. ANN haveebaleveloped as generalizations of mathematicakhsod
of human cognition or neural biology, based onassumptions:
1. Information processing occurs at many simple eleis called neurons that is fundamental the opmeraif
ANN's.
2. Signals are passed between neurons over conmdictis.
3. Each connection link has an associated weighthyfm a typical neural net, multiplies the sigirahsmitted.
4. Each neuron applies an activation funct{asually nonlinedrto its net inpu{sum of weighted input sign3ls
to determine its output signal.
There are two main connection formulas (types)ifeet(recurrent) and feed-forward connections.Fegldz
one type of connection where the output of onerlageates back to the input of a previous layer toothe same
layer.Feed-forward neural network(FFNN) does noteha connection back from the output to the input
neurons(Fig.1).There are many different trainingodathms, but the most often used training alganitis the
back propagation(BP)rule.ANN is trained to map a eé input data by iterative adjusment of the
weights.Information from inputs is feedforward thgh the network to optimize the wieghts betweerromesi
Optimization of the wieghts is made by backwardpaigation of the error during training phase. TheNAdads
the input and output values in the training dataasel changes the value of the wieghted links tuce the
difference between the predicted and target(obd@vakues.The error in prediction is minimized asrosany
training cycles(iteration or epoch) until netwodaches specified level of accuracy.A complete rafrfdrward
backward passes and wieght adjusments using ait oiput pairs in the data set is called an epwdteration.
In order to perform a supervised training we needhg of evaluating the ANN output error between dctual
and the expected outputs .A popular measure igrthan squared error (MSE) or root mean squared
error(RMSE) (Tawfiq 2004, Tawfig & Al-Abrahemee 201
3. Description of The M ethod

In this section we will illustrate how our appch can be used to find the approximate solutfdheogeneral
form a second order differential equation(Lagaiias & Fotiadis 1998):

G(X,¥(X),V¥X), V2 ¥(X)) =0, XED 1) (
Where a subject to certain boundary conditi®&'s) or initial conditions(IC’s) (for instance Dirichlet and / or
Neumann conditionsand %= (X1, X3, . ... ,X,) € R", D c R" denotes the domain alf(X) is the solution to be
computed.

To obtain a solution to the above differential €t the collocation method is adopted which asssra
discretization of the domain D and its boundaryt8 ia set points @Bnd’S respectively. The problem is then
transformed into the following system of equations:
G(il ,lp(;()l) ,V lp(;()l) , V2 q"(il)) =0,v )—()i [S D (2)
Subject to the constraints imposed by Bii&s or IC’s.
If ¥, (X,P) denotes a trial solution with adjustable paransgpethe problem is transformed to a discretize form

i 2
M S en (GERWCRB), VW (R, B), VW (%,B))) 3)
Subject to the constraints imposed by Bi@&s or IC’s.
In the our proposed approach, the trial solutipremploys a feed forward neural network and thempatars™p
correspond to the weights and biases of the newchitecture. We choose a form for the trial fumctV, (X)
such that it satisfies tH&C’s or IC’s. This is achieved by writing it as a sum of twanis.

Y. (X) =AR)+ F(X, N(X,P)) (4)

Where NX,P) is a single-output feed forward neural networkhwiarameters pnd n input units fed with the
input vectorx
The term AX) contains no adjustable parameters and satisfeedolindary conditions. The second term F is
constructed so as not to contribute to Bii&s or IC’s, sinceW,(X) satisfy them. This term can be formed by
using a ANN whose weights and biases are to bestdjuin order to deal with the minimization problem
(Lagaris,Likas & Fotiadis 1998).
Our numerical result shows that our approach, whaded on the above formulation is very effective @an be
done in reasonable computing time to compute aarate solutions.
4. Computation of The Gradient
An efficient minimization of(3) can be considered as a procedure of
training the ANN, where the error correspondingéexh input vectd; is the value K;) which has to forced
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near zero. Computation of this error value involwes$ only the ANN outpufas is the case in conventional
training) but also the derivatives of the output with respgecany of its inputs. Therefore, in computing the
gradient of the error with respect to the netwosdights (Tawfiq 2004).
Consider a multilayer FFNN with n input units, dridden layer with H sigmoid units and a linear auitpnit.
The extension to the case of more than one hidd@rd can be obtained accordingly.
For a given input vector % (X, , X, , ..., X,) the output of the ANN is:
N :Z{-[::L Vi S(Zi) , Whereli = Z?:l Wij Xj + bi
w;; denotes the weight connecting the input gind the hidden unit,
v; denotes the weight connecting the hidden wutaitthe out put unit,
b; denotes the bias of hidden uiiand
s(z) is the hyperbolic tangent activation function.

The gradient of ANN, N with respect to the paramsetd the ANN can be easily obtained as:
oN

a—vi = S(Zi) (5)
:—; =v;s'(z) (6)
£%=wﬂm& @)

Once the derivative of the error with respect te tietwork parameters has been defined, then itsisaight
forward to employ any minimization technique andwik use BFGS quasi-Newton method .

5. [llustration of The M ethod

We will consider a two - dimensional problems. Hoesg it is

straightforward to extend the method to more diritars

For example, consider the Poisson equation ( isfiddas & Fotiadis 1998):

Yy , 02W(x,y) _
9x2 + 0y2 - f(X )] Y) (8)

x € [0,1],ye€ [0, 1] with Dirichlet BC:

Y(0,y) =), ¥ 1,y) = f1(y) , ¥(x,0) = g,(x) and¥ (x,1) = g,(x) , where § , f; , g, and g are
continuous function.

The trial solution is written as

Y (x,y) = AKX, y) +x(1 —x) y(1 —y) N(x,y,p) )

Where Ax,y) is chosen so as to satisfy the BC, namely:

Alx,y) = (1= fo(y) +x f1(y) + (1 —y) {900 — [(1 = %) g(0) + xgy (D]} + ¥{g,(0 — [(1 = x) g,(0) +
xg, (D]} (10)

For mixed boundary conditions of the form:

w(0,y) =f(y), ¥(1,y) =f(y), ¥(x,0) = g,(x) and(d¥(x,1)/dy) = g,(x)

(i.e., Dirichlet on part of the boundary and Neumatsewher}y the trial solution can be written as

W(x,y) = B(x,y) + x(1 = x)y[N(x,y,p) — N(x,1,p) — dN(x,1,p)/dy]
(11)

And B(x,y) is again chosen so as to satisfy the 8C

B(x,y) = (1 = 0)fo(y) +x f1(y) + g0 — [(1 = %) gy(0) + xg,(D] + ¥g, () — [(1 =) g,(0) + xg, (D]}
(12)

Note that the second term of the trial solution does notcffhe boundary conditions since it vanishes at the
part of the boundary where Dirichlet BsCare imposed and its gradient component normaheoboundary
vanishes at the part of the boundary where NeurB&is are imposed. In all the above PDE problems ther err
that should be minimized is given by:

2
E[p] = B, (TR + Sy, y,)) a3)
Where(x;,y;) are points irf0,1] x [0,1] (Tawfig 2004).
6. Proposed Method
In this section we will introduce a novel mathto modify the artificial neural network ANN . Thinew

method based on replaced every x in the input vectaining se) X = (X1,X, «.. .. ,Xn) , X; € [a,b] by a
polynomial of degree one. Ezadi and parandin (R0%8d the function:

Q(xX) = (x +1) ,e € (0,1) (14)
Then the input vector will befQ(x;), Q(X3) , -..... Qky,)), Q;) € (a,b) In this paper, we named this

proposed method modified artificial neural netw@wANN). Using modified artificial neural network rkas
that training points should be selected over thendipterval(a, b) without training the neural network in the
range of first and end points. therefore, the datg volume involving computational error is regd. In fact,
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the training points depending on the distaficeb] selected for training neural network are convettedimilar
points in the open intervéh,b) by using a new approach, then the network is edim these similar areas.

From above, we have: for a given input vedtar, x5, ... ... ,Xn) , X; € [a,b], the output of the modified artificial
neural network is:
N :Zf[:l Vi s (Zi) , where Zi = Z?:l Wl] Q(X]) + bi (15)

and Qk;) =€ (x; + 1),e € (0,1) andk; € [a,b], then Q¥;) € (a,b)
Note that, equation& _7) will be:

—N = S(W i Q(Xj) + bl) = S(E (X] + 1) WU + bl) (16)
:bN =V;sS ( Q(Xj) + bl) =Vj S,(E (Xj + 1) WU + bl) (17)

Nij =Vi Q (X]) S,(Wij Q(X]) + bi):vi Q(X]) S’(E (X] + 1) Wl] + bl) (18) wheres’ is the first derivative of

the hyperbolic tangent function.
7. Solution of Partial Differential Equations

We will consider boundary value problems padifferential equation with Dirichlet conditiong dleumann
conditions. All the subsequent problems were defioa the domain [0,1] x [0,1] and in order to pemfo
training we consider a mesh points obtained by idensg ten equidistant points of the domain [@fLkach
variable. In analogy with the previous cases tharalenetwork archilecture was considered to be FRrit
two inputs(accepting the coordinates x and y of each ppint hidden units and one linear output unit (Fig.1).
For every entries andy , the input neurons makes no changes in its inpatthe input to the hidden neurons is:

Net=xwj;; +ywj, +B;, j=1.2,..... ,m (19)

Wherew;; andw;, are a weights from the input layer to jtie unit in the hidden layer,;Bs anjth bias for the
jth unit in the hidden layer. The output in the Eddheurons is :

Z;=9net) ,j=12,.... ,m. (20)

The output neuron make no changes in its inputtheo input to the output neuron is equal to outpht=
XV Z; ...(21)

« For MANN, eq.(19) will be:

net = Qk) wj; + Q) wj, + B; = e(x+1) wj; +e(y+1) wy, + B; (22) Zj = He(x+1) wj +
e(y+1) wj, + By) (23)

N =370, V) s(e(x+1) wj; +e(y+1) wj, + By) (24)

Wherej =1,2,...... ,m g € (1,0) and X) , Q) € (a,b)
8. Numerical Examples

In the section we report some numerical resutts the solution of a number of model problemsallitases
we used a three-layer FFNN having two input urotse hidden layer with 10 hidden unftseuron$ and one

X _ =X
output unit, and hyperbolic tangent activation timm, that is: s(x) -—-:Tz_x For each test problem, the

analytical solutionu,(X) was known in advance, therefore we test the acguoé the obtained solutions by
computing the deviationAu(X) = |u,(X) - u,(X)| (25)
We will use BFGS quasi-Newton method to minimize #rror function. Also, we will introduce a compzsanm
between the usual artificial neural network(UANMYahe modified artificial neural network(MANN) hysing
a numerical results in other references .
Example (8.1): Consider the boundary value problem:
02u , 92u
Pyl —y—O X,V € [0,1]
With the Dirichlet boundary conditions:
u(0,y) =0,u(1,y) =0,u(x,0) =0 andu(x,1) = sinmx .
the analytical solution ist, (x,y) = W
By using (9), the trial solution has the form:
u (x,y) =y sin mx + xy (x - 1) (y - 1) N (x,¥,p).
To find the error function E that must be minigdz we calculate:

% 2y sin x + (y y) [(x —x) +(4 2) +2N] (26)
92 ut(xy) (x -x) [(y y) (4y 2) +2N] 27)

By usmgeq (13), we have
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-miy; sin Tix; + (yiz- yi) ((X -X; ) z N(xl y‘ p)> + (4xi —2)]
— ON(xi,yi.p) |
E(p) = 211=11 % + ZN(XI ' Yir p) + (Xl -Xj )
02 N(xi ,yi,p) ON(Xj ,yi,p) |
(6 20282 ¢ (a2 222 2G5y, )|
(28)
For eq. (21), we have:
N(,y,p) =X}, vjs (X wji+y wj, +B;) (29)
aN ,
(;(xyp) =272, vy wi 8" (X Wity wy, +B)) (30)
92N "
—6(:2”) = ]101V] Wh s (x wjity wj, + Bj) (31)
aN ,
—(;yyp) =Xj21 vy win ' (Xwji+y wy, +B;) (32)
92 N(x,y.p)
% ] 1v]w s’ (XW]1+YW]2 +B) (33)
By substitutg(29 —33) in (28) , we have:
_ . 2
-m?y; sinmx; + (yf-yi) (xF-x;) Zj21v; wh
S”(Xi Wj1+ y sz + B]) + (4Xi' 2) Zjlgl V]' le
E=yil s'(xi Wity Wiz +B;) #2132, v; s (% Wyt i Wy, +By))
1= rr
+(X -Xj )((YI y}) Z; 1Vj W]2 S (Xi Wity wj; + B]-)
+ (4yi- 2) X2, vy wyp * (X Wit yi wyp +B;) +2
721vj's (xi wjr+yi Wy +B;))
(34)

Then one can usg@4) to adjust the weights and biases with respecst@luartificial neural network(UANN).
e For MANN : in the same way, we have:

-y sinmx; + (yi-yi) (xF-x) Zj2, vy wiy s”

(Q:) wji*+ Q(y:) wyz +B;) + (4x;-2) X172, vj wyss’
(Q(xi) wj1+ Q(y;) wj,+B; )+2 X2 vjs
E=XY (Q;) wjs + Qi) wj, +B)))+(x7-%;) ((yZ- vi) (35)
Yl viwhs” (Qx) wjs+ Q(y;) wj, +B;)+ (4yi- 2)
P Vj wj, 8" (Q(x;) wjs + Q(y;) wj, +B;) +2

Vj S (Q(X ) le+ Q(Yl) WjZ +B; ))

We use(35) to adjust the weight and biasesr.t. MANN.
Since x ,y€[0,1], then Q%) , Q) € (0,1) and since QX) = e(x+1) , Q) = e(y+1) , then we must chooge
< 0.5.for e =0.4 , the training set will be:

x:0 01 02 03 04 05 06 07 08 09 1

y:0 01 02 03 04 05 06 07 08 09 1
Q(x): 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8
Q(y): 0.4 0.44 0.48 0.52 0.56 0.6 0.64 0.68 0.72 0.76 0.8
Also , we solved this example by using usual iai&if neural network, these result can be foundalvie (1).

Analytical and trial solutions for this problem che found in tabl€¢1) and figureq2) and(3) .
Example (8. 2)' Consider the non-linear PDE:

a%u 62
ax2 6 y2
Wherex,y € [0 1] and with mixed boundary conditions:

u(0,y) =0, u(1,y) =0, u(x, 0) 0 (x 1) =2 sin mx.

The analytical solution for this problem i8; (x,y) =y? sinmx.

By using (11 and 12) , the trial solution has therf:

U(xy) = 2ysinmx +xy (1-) [NCx,y,p)- N(x, 1,p)- 822 (36)

From(36), we can find:

u— =sinmx (2 - n?y?+ 2y® sin ),
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2%up(xy) _ . 92 N(x,y,p) 9%N(x,1,p) 83 N(x,1,p)
atxz - ) 2 y sinTix + y(x-) ( ax2  9x2  Qyoxox )
N dN(x,1,p) 0%2N(x,1, AN(x,1,
+ 2y(1- 2X)( (x yp) (;(X p) 6;;)( p)) 2y (N(x v,p) — N(x,1,p) — (xy p))
(37)
3 ue(x,y) _ . 8 N(x,y,p) 8 N(x,1,p)
—u:,,; Y = 2 sin mix + (x - x?) (y—X Y 4N(x,y,p) — N(x,1,p) — %)
(38)
% ur(x,y) _ a2 N(X ¥p) | 8 N(X,y,p)
TG = (- 8) (y e 2 ) (39)
Form eq. (13) , we have
E=
—2n? y;sinmx; + yi(x; - x7) T
8% N(xi yi.p) _ 8% N(x; ,1.p) _ 8% N(x,1,p) _
( %2 %2 Jdy 9x 0x ) + 2y (1 ZXi)
0 N(xi,¥i,p) _ d N(xi,1,p) _ 92 N(xi,1,p) _
( ax ax dy 0x ) ZYi
9 N(xj,1,p) 2
(NG v - NGxi, 1,p) - Z552) 4 (x; - x2)
i 82 N(xi yip) | - 9 N(xjyip)
= ( i dy? +2 dy ) *
i 8 N(x;,1,p)
(Zyi sin i yi(x; - x2) (NG, yi, )= NCxi, 1, p)- %)) .
. ON(x;i , ¥i.p ON(xj, 1,p
(2 sinmx; +(x—%¢) (yi%+N(x,, ¥,.p)-N(x;,1,p)- #)>
—sinmx; (2 — m2y? + 2y? sinmx;) |
(40)
Where :
N(x,1,p) =X72, vj s (X wj; + wj, +B;) (41)
9 N(X LP) - Z] 1V Wi s’ (x wji+ wj, + B]-) (42)
2
9 I\;(:Zl p) _ ]1.91 v; szl s”’ (X Wi+ wj, + Bj) (43)
9 N(X LP) - Z] 1V Wjp s’ (x wji+ wj, + B]-) (44)
2
: lzjy();xl 2= = X321 viwjn Wz s (X W+ wy, +B;) (45)
3 NEX,1p) _ 10 2
m =Lj=1Vj Wj1Wj, S (X Wj1+ Wi + Bj) (46)
* For MANN : in the same way, we have:
[ —2m? y;sinmx; + yi(x; - x7) T
2 NQGDQ)P) _ 9*NQX)Lp) _ 33 N(Q(x)),1,p)
( ox? - 0x?2 - dy 0x 0x ) + ZYi(l - in)
(6 N(Q(),Q(yi)p)  dNQ(xp,1,p)  §? N(Q(Xi),l,p)) _ v
ax ax dy dx Yi
4 N(Q(xp),1,p)
(NQGD, QLY. P~ NQGx), 1, p) = T2 + (x; - x7)
9% N(Q(xi) Q1).p) a N(Q(x).Q(y).p)
E=YiL (Yi ay? +2 a ) *
=li=1
. 2 N(Q(Xl) ’ Q( Yi)' p)_ N(Q(Xi)! 1' p)'
2y; sinx;+y;i(x; - x7) d N(Q(xj),1,p) *
dy
9 N(Q(x1),Q(yi).p)
[ o SR AN(Q) Q). P)-
2 sin mx; +(x; - X§ aN -
(Qxy),1,p)
N(Q(x), 1, p)- o
sinmx; (2 — m2y? + 2y? sin mx;)
(47)

where
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N(Q®),1,p) =X, v; s (Qx) wj; + wj, +B;) (48)
O =512 vy wir s (QE) Wyt Wy +B)) (49)
2ENQ) Lp) N(sz() D) = 2321V wh 87 (Q) wj+ wjz +B;) (50)
R 1b) N(Q;;) B = 3110, vy wi ' (QR) wia+ wj, +B)) (51)
9 NQ® 1p) NS(;))(’LP) =¥12,vjwj; Wi 87 (Q(x) wjs + wy, +B;) (52)
. Sﬁfﬁip) = X% v; wiwe 8" (QR) wj+ wj, +B)) (53)

Then we can use (47) to update the weights aneé$ias. t. MANN.
Sincex,y € [0,1] , then Q%) , Q) € (0,1). Therefore, we must choose< 0.5. for € = 0.2, the training set will
be:

xx0 01 02 03 04 05 06 07 08 09 1

y:0 01 02 03 04 05 06 0.7 08 09 1
Q(x): 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Q(y): 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
Lagaris,Likas & Fotiadis(1998) solved this problesmusing UANN, the maximum deviation in these tesu
0.000015, we compared this absolute error with the absdauter which we found by using MANN. Analytical
and trial solutions for this problem can be foundable(2) and figureq4) and(5) .
9. Results and Discussion
From the numerical examples in this work , it isacl that the modified artificial neural network egvbest
results and better accuracy in comparison with lusdiicial neural network . We can conclude thta¢ method
we propused can handle effectively all types ofighdifferential equations and provide accurapproximate
solution throughout the whole domain and not ornlyha training set. Therefore, one can use thepotation
techniques (such as curve fitting metheéal find the approximate solution at points betwé®ntraining points
or at points outside the training set.
Tablg3)reports the maximum and minimum absolute erroresponding to the MANN and to the UANN .
Note that for example (8.2), Lagaris, Likas & Fdi&(1998) they had compared the results obtainéu the
result that found by using the finite element mdthiehich has been widely acknowledged as one ofribst
effective approaches to find the approximate sohgiof differential equations. The maximum absoérter by
using FEM is 0.00000086, this result is better ttiaat obtained by using the MANN which is 0.0000024t we
must Note that the accuracy of the MANN method lsarcontrolled by increasing the number of hiddeitsur
expansion the training set.
10. Conclusion
In this paper, we presented a hybrid approachdbasemodified artificial neural networks for solgimpartial
differential equations. We demonstrate, for thetfiirme, the ability of modified artificial neuraletworks to
approximate the solutions of PDEs . The main redsorusing modified artificial neural networks wéseir
applicability in function approximation. Furthersearch is in progress to apply and extend this odeth solve
three-dimensional partial differential equationsd aintegral equations .
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Figure 2. Analytical and trial solutions for exde(8.1), for x = 2.5 and g[2,3].
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Table 1. Numerical results for example (8.1).
X y Uy (X,Y) by UANN error by MANN error
U (X,y) (x,y)
0 0 0 0 0 0 0
0.1 0.1 0.008537828 0.008525483 0.000012345 0.008537786 0.000000042
0.2 0.2 0.034097183 0.034074725 0.000022458 0.034097144 0.000000039
03| 0.3 0.076183058 0.076231065 0.000048007 0.076183619 0.000000561
04| 04 0.132865960 0.132947134 0.000081174 0.132866552 0.000000592
05| 0.5 0.199152886 0.198921655 0.000231231 0.199153514 0.000000628
06| 0.6 0.264808483 0.264353083 0.000455400 0.264809191 0.000000708
0.7 0.7 0.311834910 0.311176780 0.00065813 0.311835847 0.000000937
0.8| 0.8 0.312025528 0.312814326 0.000788798 0.312019907 0.000005621
09| 0.9 0.225309818 0.225765479 0.000455661 0.225305948 0.000003870
1 1 0 0 0 0 0
Table 2. Numerical results for example (8.2)
X |y W (X,Y) U (x,y) error
0 0 0 0 0
01 01 0.003090169 0.003087756 0.000002413
02| 0.2 0.02351141 0.023509708 0.000001702
03| 03 0.072811529 0.072812021 0.000000492
04| 04 0.152169042 0.152169553 0.000000511
05| 05 0.250000000 0.250000873 0.000000873
06 | 0.6 0.342380345 0.342379432 0.000000913
0.7 | 0.7 0.396418327 0.396418379 0.000000052
08| 0.8 0.376182561 0.37618252 0.000000041
09| 0.9 0.250303765 0.250304127 0.000000361
1 1 0 0 0

Table 3. Maximum and minimum deviation from thelgti@al solution for the MANN and the UANN .

Example Max. error Min. error by Max. error it error by
No.
8.1. 0.000005621 0.000000039 MANN 0.000788798 0.000012345 UANN
8.2. 0.000002413 0.000000041 MANN 0.000015000 0.00000100 UANN
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