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Abstract 

The behavior of slotted aloha protocol for a star-coupled Wavelength Division Multiple Access (WDMA) 

photonic network is studied. Semi-markov process is used for developing the steady state and transient models 

for the protocol. The performance of the network is evaluated in terms of various measures viz. average number 

of packets in the network, throughput of the network and average packet delay etc. The analytical models are 

validated by evaluating the numerical values of the performance indices, which are further compared by using 

Adaptive Neuro Fuzzy Inference System (ANFIS) approach.  
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1. Introduction 

The advancement of light wave technology over the past decade has revolutionized long distance 

communications. Research on photonics switching has been motivated due to the advantages of fiber optical in 

high-speed networks, distributed networks, Broadband Integrated Service Digital Networks (BISDN) etc. Highly 

motivated by the impressive results of fiber optic technology in the eighties and nineties, various scenarios 

predicted a telecommunication infrastructure based on all-optical networks including optical frequency division 

multiplexing (OFDM), information super-highways, coherent receivers with tunable lasers, all-photonics 

switching networks and finally fiber-to-the-home (FTTH) with ATM-based digital broadband accesses. The 

introduction of high-quality, interactive multimedia services like video-on-demand (VoD) require high bit rate 

accesses and system upgradation to much larger capacities. The continuously increasing demand of higher 

transmission capacity has resulted in the enhancement of photonic (optical) networks.  

The photonic networks are generally built by using passive star couplers. Dowd [1989, 1990] 

discussed star-coupled parallel interconnection in optical networks. In the star topology, each station is 

connected to a central node or a hub through point-to-point links. The hub, which can be an active or a passive 

device, directs the flow of traffic to all other stations. In case of a passive hub, the star topology becomes a 

broadcasting system, in which, the incoming signals are equally shared among all the stations. Star coupled 

networks have high fault tolerance due to their passive nature and complete connectivity. Pre-allocation 

techniques are usually employed as the media access control protocols for wavelength division multiple access 

(WDMA) star-coupled photonic networks. The pre-allocation techniques eliminate the requirement that a node 

possess both a tunable transmitter and a tunable receiver. This reduces the implementational and operational 

complexities of the network.  

Wavelength division multiplexing (WDM) is an emerging technology for increasing the bandwidth of 

optical networks (Ugale and Mishra, 2011; Mishra et. al., 2011). The advent of real-time multimedia services 

over the Internet has stimulated new technologies for achieving the high level of Quality of Service (QoS) 

guarantee for sensitive multimedia traffic and for expanding the capacity of optical network backbones 

(Amphawan and Abraham, 2002; Amphawan et al., 2010; Stepniak et al, 2011; Amphawan, 2011). Various 

routing algorithms for reducing packet delays and alleviating network congestions for multimedia traffic have 

been developed (Li and Dimyati, 2009; Pevac et al., 2011; Deepalakshmi, 2012). 

The performance modelling and analysis of the photonic networks has attracted the attention of many 

researchers.  Mehravari [1990] analyzed the performance of very high-speed optical fiber local area networks 

using a passive star topology. Ganz and Koren [1991] examined the performance of WDM passive star-protocols. 

Sivalingam et. al. [1992] studied the behavior of static and random access protocols for multiple access WDM 

photonic networks. The protocols considered by them were based on an architecture with one tunable transmitter 

and one fixed receiver at each node. But, they assumed that the transmitter could only have one packet in the 

buffer. Huanga and Ma (2009) presented a performance model for differentiated service over single-hop passive 

star coupled WDM optical networks. 

In this investigation, we analyze the behavior of slotted aloha protocol for a star-coupled WDMA 

photonic network. We consider that the transmitter has a finite buffer in which, more than one packet can wait 

for the service. Transient as well as steady state models are developed for the protocol by employing a Semi-

markov process. Analytical expressions are obtained for various performance measures of the network viz. 

average number of packets in the network, throughput of the network and average packet delay etc.  

We also approximate the performance measures by using neuro fuzzy systems (NFS). Neuro-fuzzy 
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systems are employed to facilitate the soft computing approaches, which combine artificial neural networks 

(ANNs) and fuzzy systems (FS). Biologically, these systems resemble the nervous systems, where the ANNs are 

analogous to the neural cells which are low-level perceptive, responsible for the signal integration while the FS 

are equivalent to the brain which provides high level reasoning and linguistic abilities. In this study, we use a 

special class of neuro-fuzzy systems, i.e. Adaptive Network-based Fuzzy Inference Systems (ANFIS) that can 

identify parameters by using supervised learning methods. The ANFIS learning algorithm is a hybrid supervised 

method based on gradient descent and least square methods. A survey on fusion technology of fuzzy technology 

and neural networks is done by Takagi [1990]. Jang and Sun [1993] studied the learning algorithms of adaptive 

network-based fuzzy inference systems. More detailed descriptions of adaptive neuro fuzzy systems can be 

found in Cornelius and Leondes [1998] and Tettamanzi and Tomassini [2001].  Neuro-fuzzy technique is an 

emerging soft-computing methodology which has been successfully applied in telecommunication systems for 

call admission control, parameter estimation, routing, traffic policing, ATM traffic shaping and flow control, 

network management etc.  Nelson and Tham [2000] employed an integrated neural network and fuzzy controller 

to implement a call admission controller. They exploited the learning ability of the neural network and the 

robustness of the fuzzy controller.   

The rest of the paper is organized as follows: In section 2, we describe the architecture of ANFIS 

employed for the prediction of neuro-fuzzy results. The analytical traffic model of the photonic network is 

developed in section 3. The queue size distributions for both transient and steady state models are also provided.  

Various performance measures of the network are discussed in section 4. In section 5, the performance measures 

are established by using neuro-fuzzy approach. Numerical illustrations for comparing the analytical results with 

the neuro-fuzzy results are provided in section 6. Finally the conclusions are drawn in the last section 7. 

 

2. Adaptive Network-based Fuzzy Inference Systems (ANFIS) 

ANFIS is a network representation of Tagaki-Sugeno-Kang (TSK) type fuzzy systems with learning capabilities. 

TSK is a special type of fuzzy rule-based system in which rules are of the form 

IF x1 is A1 AND x2 is A2…AND xn is An THEN y=f(x1,x2,…,xn) 

where f is usually a linear combination of the input variables i.e. 

f(x1,x2,…,xn)=w0+w1x1+…+wnxn 

Here w0, w1,…,wn are real constants which are part of the rule specification. The combined result of applying the 

rules of a TSK system is a crisp number, which is computed as the average of the outputs of the single rules 

weighted by the degrees of truth of their antecedents. This is a particular case of the weighted average method of 

defuzzification.  

The ANFIS heterogeneous architecture constitutes a number of layers where each layer has a number 

of nodes. For example, a fuzzy inference system with one input x and one output y can be described by the 

following n rules using TSK model: 

IF x is A1 THEN f1=p1x+r1 

IF x is A2 THEN f2=p2x+r2 

… 

… 

… 

IF x is An THEN fn=pnx+rn 

The corresponding ANFIS network architecture is depicted in fig. 1. As can be seen from the figure, there are 

many layers in the network. Let Ol,i be the output of node i in layer l. The functionalities of all the layers are as 

follows: 

Layer 1: Each node in the 1st layer is an adaptive unit with output 
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where x is the input value and Ai’s are the associated fuzzy sets. Here wi is the firing strength of each node. The 

membership functions for each Ai can be any function among triangular, trapezoidal, gaussian or bell-shaped. 
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Layer 4: The single node in this layer aggregates the overall output as the summation of all the incoming signals, 

i.e. 

 

∑ =

∑ =
=∑ =

=
n
i i

w

n
i i

f
i

w
n
i i

f
i

wO

1

1
11,4

 

 

3. Analytical Traffic Model 

We consider a photonic network with M nodes, which are interconnected by C channels. Each node in the 

network is assumed to have a tunable transmitter and a fixed receiver. The transmission of the packets in the 

network occurs according to the slotted aloha protocol where a source node transmits on the home channel of the 

destination node as soon as a packet is generated (cf. Sudhakar et. al. [1991]). A packet slot is divided into two 

sub-slots: transmission sub-slot and acknowledgement sub-slot. During the transmission sub-slot, the source 

node transmits a packet to the destination node while in the acknowledgement sub-slot, the destination node 

transmits an acknowledgement to the source node. In case the source node doesn’t receive any acknowledgement, 

then it implies that a collision has occurred and the packet hasn’t reached the destination. In such situation, the 

transmitter of the source node backs off from transmitting, and retransmits the packet with a backoff probability 

Pb. We employ a semi-markov model for analyzing the network. Following are the assumptions and notations 

being used in the formulation of the traffic model: 

Assumptions: 

• The packets at each node are generated according to Poisson distribution. 

• All packets in the network are of fixed length. 

• At each node, at most one new packet can arrive at a time. 

• All the nodes have finite transmitter buffers in which S packets can be buffered at most. 

• All nodes are identical and independent. 

• In the beginning, when no packet is generated in the network, the transmitter is in idle state and as 

soon as a packet is generated, the transmitter enters the transmission state. 

Notations: 

 S  Buffer size of the transmitter   

I  The state representing that the transmitter is idle 

Ti The state representing that the transmitter is transmitting a packet with i packets in the 

buffer (i=0,1,…,S) 

Bi The state representing that the transmitter is in backoff state with i packets in the 

buffer (i=0,1,…,S) 

Ps(t) Transient probability that a packet is transmitted successfully  

Ps Steady state probability that a packet is transmitted successfully 

Pj(t) Transient state probability representing that the transmitter is in state j (j=I, T0, 

T1,…,TS, B0, B1,…,BS) 

Pj Steady state probability representing that the transmitter is in state j (j=I, T0, T1,…,TS, 

B0, B1,…,BS) 

  Packet generation rate per node when the transmitter is in idle state 

(=1-e-) Probability that one packet is generated in a slot when the transmitter is in idle state 

 Packet generation rate per node when the transmitter is not in idle state 

(=1 -e-) Probability that one packet is generated in a slot when the transmitter is not in idle 

state 

The probability of successful transmission Ps,(t) is given by (cf, Sivalingam et. al. [1992]) 

Ps (t) = (1-Ptransmit(t)/C)(M-1)       …(1) 

where Ptransmit(t) is the probability that the transmitter is in transmitting state. 

A semi-markov model is employed for analyzing the slotted aloha protocol for the considered photonic network. 

We focus on the behavior of a single node of the network. Fig. 2 depicts the state diagram of the process of one 

node. Now, we construct Chapman Kolomogorov equations (cf. Klienrock, 1975) governing the model as 

follows: 
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Following are steady state equations obtained from eqns. (2)-(14): 
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Queue size distribution: 

The transient and steady state queue size distributions can be obtained by solving the set of equations (2) and (3) 

respectively. There are many iterative methods for solving the set of differential equations like SOR (successive 

over-relaxation) method, Newton Raphson method etc. But we employ Runge-Kutta method of fourth order for 

solving the transient equations. For the steady state equations, we use the “fsolve” routine of MTLAB package 

for obtaining the numerical values of steady state probabilities. This routine uses the Gauss-Newton method for 

solving the set of algebraic equations.   

 

4. Performance Analysis 

After obtaining the queue size distributions, we obtain some performance measures for the photonic network 

using the above-determined probabilities as follows:  

• Transmission state probability: 
The probability that the transmitter is in transmitting state can be obtained by,  
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• Backoff state probability:  
This is the probability, which represents that the transmitter is in the backoff state and can be expressed 

as 
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• Average number of packets in the network:  
The average number of packets in the network is given by 
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where EI=0, E0=1, E1=2, E2=3, E3=4, E4=5,...,ES=S-1 

• Throughput:  
It is defined as the total number of packets successfully transmitted per slot across all the channels. For 

a particular node, the number of packets transmitted successfully is determined by the probability that 

the transmitter is in transmitting state and the probability of successful transmission. Hence, the total 

network throughput TP is obtained as  

)()()( tPtPMtTP stransmit⋅=       …(7) 

• Average packet delay:  
The packet delay is the time gap between the packet generation at the source node and the packet 

receipt at the destination node. Mathematically, average pcket delay at a single node can be obtained by 

using Little’s law as 

γ

)(NE
D =  , 

where  is the throughput per node. Hence,  
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The performance measures for the steady state model can be determined in a similar manner by using the steady 

state probabilities obtained form eq. (3)  

 

5. Neuro-Fuzzy Model 

In this section, we discuss the neuro-fuzzy approach for computing various performance measures of the 

photonic network described in the previous section. The ANFIS network for approximating the average number 

of packets E(N), network throughput TP and the average packet delay D for the steady state and transient models 

are built by using the fuzzy toolbox of the MATLAB package. The performance measures are obtained by 

varying various parameters like packet generation rate λ, time period T, number of nodes M and number of 

channels C. These parameters are treated as the linguistic variables in the context of the fuzzy systems. While 

building the respective ANFIS networks, these parameters are taken as the input values. The gaussian function is 

used for describing the membership functions for the various input parameters. Table 1 provides the number of 

functions and the corresponding linguistic values of the input parameters and the shapes of the corresponding 

membership functions are shown in fig.3. 
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 Table 1: Linguistic values of the membership functions for various input parameters 

Input variable No. of membership functions Linguistic values 

Packet generation rate ( )  5 

• Very low 

• Low 

• Average 

• High 

• Very high 

Time period (T) 5 

• Shortest 

• Shorter 

• Short 

• Medium 

• Lengthy 

No. of nodes (M) 2 
• Less 

• Large 

No. of channels (C) 2 
• Less 

• Large 

 

6. Numerical Illustrations 

The analytical results for steady state and transient semi-markov models obtained in the previous sections are 

validated through numerical experiments. The steady state probabilities are computed numerically by Gauss-

Newton method, using the ‘fsolve’ routine of MATLAB. For the transient model, the Runge-Kutta method 

(RKM) of fourth order is used for solving the system of differential equations, which is implemented by 

exploiting MATLAB’s ‘ode45’ function. A time span of [0-100] is taken with equal intervals of 10 units. The 

numerical results obtained for various performance indices of both steady state and transient models are also 

compared with neuro-fuzzy results by building ANFIS networks in MATLAB 6.0. For all the approximations, 

the ANFIS networks are trained for 10 epochs. For illustration purpose, we take the buffer size of the transmitter 

as S=5. 

Figures 4-6 plot the numerical results for the steady state model by taking the backoff probability 

Pb=0.05. The graphs in figures 4(a-b), 5(a-b) and 6(a-b) depict respectively the average number of packets in the 

system E(N), network throughput TP and average packet delay D by varying the packet generation rate  for 
various values of M and C. The continuous lines depict the case where the packet generation rates in the idle 

state and the transmission and backoff states are homogeneous i.e., λ0=λ whereas the broken lines illustrate the 

case of heterogeneous packet generation rates i.e., λ0=.9λ  It can be seen that the values of all the performance 

indices are lesser for homogeneous rates than that for the heterogeneous rates. From figures 4 and 5, we note that 

as more number of packets are generated in the network, the average number of packets and the throughput of 

the network increase rapidly. On the other hand, fig. 6 shows that average packet delay initially increases and 

then becomes almost constant for higher packet generation rates. This implies that packet delay can be controlled 

in the network to a certain extent for higher loads. Also, D increases with M and decreases with C. Hence if the 

number of channels is increased in proportion to the number of nodes, then the performance of the network in 

terms of packet delay can be maintained up to a certain level. Further, it can be seen from fig. 5(b) that the 

throughput increases with C. The increase in the number of channels decreases the number of collisions of the 

packets. Therefore it results in a better throughput and less delay of packets.  

In figs. 7 and 8, the numerical results using “fsolve” and the results using ANFIS are exhibited for 

throughput and delay. We observe that ANFIS results are quite closer to the numerical results in all the cases. 

Here, we also notice that TP increases with the increase in λ, M and C. The average packet delay D increases 

rapidly for low arrival rates but for higher arrival rates, D shows very slight increase. With the increase in the 

system size, i.e. the number of nodes in the network, M, the delay increases rapidly which is quite obvious. 

However, D can be decreased by increasing the number of channels C.  

In figs. 9, 10 and 11, the curves for E(N), D and TP respectively are plotted with respect to time T for 

the transient model. The continuous lines show the RKM results and the broken lines depict the ANFIS results. It 

is clear that all the performance measures become steady after a particular time. Further, for shorter time periods, 

E(N) and D increase with the increase in T. Also TP shows a rapid decrease with T. This implies that as time 

passes, the performance of the network degrades but this degradation becomes constant after a particular time as 

all the performance measures becomes almost constant for large values of T.   

In table 2, the steady state transmission and backoff state probabilities of the transmitter are displayed 

by varying λ for various values of C and M. We note that if the packet generation rate is high, then for the case 

when C=32 and M=16, the transmission state probabilities are greater and the backoff state probabilities are 
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lesser than for the cases when C=32, M=32 or C=16, M=32. Therefore, if more channels are provided in 

comparison to the number of nodes in the network, then the number of collisions can be reduced which results in 

lesser retransmissions of the packets and hence an improved network performance.  

Overall, we conclude that 

• The network performance can be maintained to a desirable level by choosing an appropriate proportion 

of C and M.  

• The transient values of the performance indices stabilize after a certain time period. This indicates that 

the performance of the network becomes stable as time passes so that there is neither further 

improvement nor degradation.  

• The results obtained by adaptive neuro fuzzy inference systems are quite closer to the numerical results. 

 

7. Conclusion 

In this investigation, we have modeled the behavior of a slotted aloha protocol for a wavelength division 

multiple access photonic network, using a semi-markov process. Steady state as well as transient models are 

developed for analyzing the protocol. The performance measures are studied with the variations in the number of 

interconnected nodes and the number of channels in the network. It is shown that the retransmissions of the 

packets can be reduced considerably if sufficient number of channels is provided in comparison to the number of 

nodes in the network. A certain level of performance can be maintained in the network if the number of channels 

is increased proportionally to the number of nodes.  

We have assumed that at each node, only one packet is generated in a slot and the transmitter can 

transmit only one packet at a time. Our work can be further extended to a network where, multiple packets are 

generated in one slot and the transmitter also can transmit more than one packet, at a time. Another interesting 

extension may be the consideration of individual and common cause failures and repairs of the nodes in the 

network. 

We have used neuro-fuzzy systems for obtaining the performance measures of the photonic network. It 

is shown that the results determined by the neuro fuzzy technique are at par with the numerical results obtained. 

We conclude that neuro-fuzzy systems provide an easy and fast solution technique for our system. Neuro-fuzzy 

systems can be further used for designing traffic controllers for the advanced photonic networks. 
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Fig. 1: ANFIS network architecture 
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Fig.2: State transition diagram for the transmitter of a node 

 

 
Fig. 3: Membership functions for the input variables λ, T, M and C 
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Fig. 4: E(N) by varying λ for different values of M and C 
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Fig. 5: Throughput by varying λ for different values of M and C 
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Fig. 6: Average Delay by varying λ for different values of M and C 
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Fig. 7(a): RKM and ANFIS results for TP     Fig. 8(a): RKM and ANFIS results for D  

by varying λ    by varying λ    
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Fig. 7(b): RKM and ANFIS results for TP       Fig. 8(b): RKM and ANFIS results for D  
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Fig. 7(c): RKM and ANFIS results for TP       Fig. 8(c): RKM and ANFIS results for D 
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  (λ=0.6,λ0=0.9λ, C=32, M=32, Pb=0.05,S=5)  
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Fig. 9(a): Transient results for E(N) with varaitions in λ 

(Pb=0.05,C=32, Μ=32, λ0=0.9λ) 
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Fig. 9(b): Transient results for E(N) with varaitions in Μ  

(Pb=0.05,C=32, λ=0.6, λ0=0.9λ) 
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Fig. 9(c): Transient results for E(N) with varaitions in  C 

(Pb=0.05,M=32, λ=0.6, λ0=0.9λ) 
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Fig. 10(a): Transient results for D with varaitions in  λ 

(Pb=0.05,C=32, Μ=32, λ0=0.9λ) 
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Fig. 10(b): Transient results for D with varaitions in  Μ 

(Pb=0.05,C=32, λ=0.6, λ0=0.9λ) 
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Fig. 10(c): Transient results for D with varaitions in  C 

(Pb=0.05,M=32, λ=0.6, λ0=0.9λ) 
 



Network and Complex Systems                                                                                                                                                         www.iiste.org 

ISSN 2224-610X (Paper) ISSN 2225-0603 (Online) 

Vol.5, No.9, 2015 

 

22 

3

6

9

12

0 20 40 60 80 100T

T
h

ro
u

g
h

p
u

t

ANF

RKM

λ=.6

λ= .3

 
Fig. 11(a): Transient results for Throughput with varaitions in λ 

 (Pb=0.05,C=32, Μ=32, λ0=0.9λ)  
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Fig. 11(b): Transient results for Throughput with varaitions in Μ   

(Pb=0.05,C=32, λ=0.6, λ0=0.9λ) 

 

3

5

7

9

11

13

0 20 40 60 80 100T

T
h

ro
u

g
h

p
u

t

ANF

RKM

C=32

C=16

 
Fig. 11(c): Transient results for Throughput with varaitions in  C 

(Pb=0.05,M=32, λ=0.6, λ0=0.9λ) 
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Table 2: Backoff and Transmit state probabilitiesfor steady state model by varying  λ    

 

C=32,M=32 C=32,M=16 C=16,M=32 

      

Ptransmit Pbackoff Ptransmit Pbackoff Ptransmit Pbackoff Ptransmit Pbackoff Ptransmit Pbackoff Ptransmit Pbackoff 

0.01 0.025125 0.221614 0.02263 0.198467 0.018385 0.106926 0.015917 0.088581 0.035568 0.405925 0.033642 0.386585 

0.05 0.079918 0.465412 0.076391 0.443866 0.074181 0.295575 0.0688 0.265063 0.082477 0.628228 0.080479 0.61684 

0.09 0.114857 0.536823 0.111332 0.517844 0.115715 0.370192 0.109832 0.339023 0.108928 0.678793 0.106938 0.669414 

0.13 0.141297 0.573238 0.138034 0.555951 0.149061 0.413037 0.143506 0.382402 0.128182 0.702609 0.126288 0.694307 

0.17 0.162282 0.596138 0.159426 0.580211 0.176519 0.442054 0.171689 0.412437 0.14312 0.716923 0.141383 0.70938 

0.21 0.179386 0.612225 0.176997 0.59752 0.199507 0.463511 0.195581 0.435078 0.155091 0.726692 0.153545 0.719763 

0.25 0.193598 0.624318 0.191675 0.610619 0.219028 0.480236 0.216059 0.453058 0.164892 0.73392 0.163536 0.727395 

0.29 0.205603 0.633921 0.20412 0.621028 0.235817 0.493734 0.233786 0.467829 0.173057 0.739491 0.17191 0.733461 

0.33 0.21586 0.641642 0.214796 0.629564 0.25042 0.504901 0.249271 0.480257 0.179938 0.743982 0.178997 0.738385 

0.37 0.224723 0.647959 0.224047 0.636727 0.263252 0.514311 0.262909 0.490902 0.185801 0.747635 0.185056 0.742486 

0.41 0.232468 0.653388 0.232127 0.642746 0.274628 0.522356 0.275006 0.500144 0.190863 0.750785 0.19028 0.745959 

0.45 0.239288 0.65805 0.23925 0.648056 0.284793 0.529314 0.285807 0.508257 0.195255 0.753485 0.194821 0.748954 

0.49 0.245337 0.662101 0.245564 0.65271 0.29394 0.535392 0.295505 0.515443 0.199092 0.755828 0.198794 0.751574 

0.53 0.250738 0.665655 0.251193 0.656826 0.302221 0.540745 0.304259 0.521856 0.202469 0.757878 0.202291 0.75389 

0.57 0.255588 0.6688 0.256237 0.660496 0.309759 0.545493 0.312197 0.527615 0.205458 0.759694 0.205386 0.755954 

0.61 0.259965 0.671604 0.260778 0.663789 0.316653 0.549731 0.319425 0.532817 0.208118 0.761317 0.208136 0.757807 

 


