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Abstract 

Car suspension system is a mechanism that separates the car from the tire. The objective of the suspension 

system is to improve a ride quality by ensuring passenger’s comfort and good car road handling when the car is 

subjected to an input excitation. The dynamics of the suspension system was mathematically modeled. The 

system transfer function determined. The suspension system performance characteristics of overshoot and 

settling time set at not more than 5% and 5seconds respectively. PID controller was designed by using the 

MATLAB function sisotool in the automated tuning technique. The result of the simulation indicated that the 

overshoot and settling time 3.35% and 3.95seconds respectively. The design requirement satisfied. 

Keywords: Suspension, active, Proportional, Integral, Derivative. 

 

1. Introduction 

Suspension system can be classified into; passive, semi-active and active suspension system. Traditional 

suspension consists springs and dampers are referred to as passive suspension, then if the suspension is 

externally controlled it is known as a semi active or active suspension. An early design for automobile 

suspension systems was focused on unconstrained optimizations for passive suspension system which indicate 

the desirability of low suspension stiffness, reduced unsprung mass, and an optimum damping ratio for the best 

controllability Alleyen and Hedrick, (1995). Thus the passive suspension system, which approach optimal 

characteristics had offered an attractive choice for a vehicle suspension system and had been widely used for 

passengers. However, the suspension spring and damper do not provide energy to the suspension system and 

control only the motion of the car body and wheel by limiting the suspension velocity according to the rate 

determined by the designer. To overcome the above problem, active suspension systems have been proposed by 

various researchers. Active suspension systems dynamically respond to changes in the road profile because of 

their ability to supply energy that can be used to produce relative motion between the body and wheel. Typically, 

the active suspension systems include sensors to measure suspension variables such as body velocity, suspension 

displacement, and wheel velocity and wheel and body acceleration Esmailzadeh and Taghirad, (1997). An active 

suspension is one in which the passive components are augmented by actuators that supply additional forces. 

These additional forces are determined by a feedback control law using data from sensors attached to the vehicle. 

The focus of this thesis is on active suspension system controller design. “The process of selecting controller 

parameters to meet given performance specifications is known as controller tuning” (Ogata, 2002, p. 682).  A 

variety of theoretical approaches have been used to produce PID-tuning formulas for a first-order plant with time 

delay. A heuristic time-domain analysis (Hang et al., 1991) used set-point weighting to improve Ziegler and 

Nichols' (1942) original PID-tuning formulas, which were also determined empirically. “Repeated optimizations 

using a third-order Padé approximation of time delay produced tuning formulas for discrete values of normalized 

dead time" (Zhuang and Atherton, 1993).  Barnes et al., (1993) used open-loop frequency response to design PID 

controllers by finding the least – squares fit between the desired Nyquist curve and the actual curve.  In reviews 

of the performance and robustness of both PI- and PID-tuning formulas, tuning algorithms optimized for set 

point change response were found to have a gain margin of around 6 dB, and those that optimized for load 

disturbance had margins of around 3.5 dB (Ho et al., 1995; Ho et al., 1996). PID-tuning formulas were derived 

by identifying closed-loop pole positions on the imaginary axis, yielding the system’s ultimate gain and period.  

Dynamics are said to suffer, however, for processes where time delay dominates “due to the existence of many 

closed-loop poles near the imaginary axis, where the effect of zero addition by the derivative term is 

insignificant to change the response characteristics” (Mann et al., 2001). 

 

2. Mathematical Modelling of Automobile Active Suspension for Quarter Car Model 

Designing an automobile suspension system to meet performance specification of ride comforts and good road 

handling is an interesting and challenging control problem. For ease of design, analysis and simulation, quarter 
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automobile suspension system model is used to simplify the problem. This model represent an active suspension 

where an actuator is included that is able to generate the required control force to control the automobile 

dynamics. From the quarter car model, the design can be extended into full car model. 

 
Figure 1 above shows a basic two – degree – of freedom system representing the model of a quarter car, where 

the quarter mass of the automobile is represented with 

sy

, referred to as sprung mass in control and dynamics 

literature.  is the mass of the wheel (unsprung mass). The spring constant of the suspension is , 

dy

 is spring 

constant of the wheel and tire respectively. The damping constant of the suspension system is  while 

sp

 is the 

damping constant of the wheel and tire respectively. 

g

 is the control force of the actuator. From the figure 1 

above and using the Newton's law, we can obtain the system equations of motion below: 

For , 

F = Ma, 

     (1) 

For , 

F = Ma, 

            (2)  

where   

 Suspension travel   

Car body Velocity  

Car Body Acceleration  

Wheel Deflection  

Wheel Velocity  

Wheel Acceleration  

In control theory, the transfer function of a system is defined in terms of an output to input ratio, but the use of a 

transfer function in system dynamics and vibration testing implies certain physical properties, depending on 

whether position, velocity, or acceleration is considered as the response (output). From equation (1) and (2); 

taking  and  as output variables and taking  and  as input variable respectively. The system transfer 

function is shown below. 

        (3) 

        (4) 

where 

  (5) 

The quarter – vehicle model parameter are listed in Table 1, (Du et al., 2008) for the following controller design.  

Table1: Parameter for Quarter Car Model  

      
973 kg 114kg 42720N/m 101115N/m 1095Ns/m 14.6Ns/m 

 

 

 

  

  Controller 

Vehicle 

Suspension 

Wheel 

Tire 

 

 

 

Figure 1: Quarter Car Model 
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3. Design Requirements 

The key suspension performance requirements are that the automobile should have a satisfactory road holding 

ability and still able to provide ride comfort when riding over undulating road surfaces, that is if the vehicle 

experience road disturbance such as falling into pot holes, uneven pavement and cracks, the oscillation that 

follows should not be too large and must dissipate quickly. 

The focus of this project is to design a controller that will control the oscillation such that the output 

response overshoot will be less than 5% with a settling time shorter than 5seconds such that, when the 

automobile runs into a pothole of say 100cm (0.1m) the automobile body will oscillate within  5mm and 

becomes steady in less than 5seconds. 

 

4. Proportional – Integral – and Derivative (PID) Controller Design (PID Compensation) 

The PID compensator is a true workhorse of feedback control. “The majority of control systems in the world are 

operated by PID controllers” (Silva et al., 2002). The PID compensator’s transfer function is a summation of 

three terms; Proportional, Integral, and Derivative, as shown in Figure 2 below  

 
Figure 2: Constituents of PID Block 

The output (power) of the PID block is the sum of Proportional, Integral, and Derivative control terms or actions. 

Setting the coefficients of the three terms ( , , ) is equivalent to tuning the controller.  

The proportional term produces control action equal to the product of process error, and compensation gain . 

 (Proportional Term) 

The integral term produces control action equal to the continuous summation of process error times, an integral 

gain . Thus integral action can be expressed as a function of the complex variable . gagagagagagaga

  (Integral Term) 

The derivative term produces control action equal to the rate of change of the process times, a derivative 

coefficient . The derivative stops ringing from occurring in a system composed of a proportionally – 

compensated second – order plant.  The derivative term can be expressed as a function of  mp

 (Derivative Term) 

The complete PID transfer function  is the sum of all three terms (Silva et al., 2002) mp

   (PID) 

PID Controller design is a classical Controller design method. In this work, the controller was designed to meet 

the set specification using MATLAB Automated tuning technique.    
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Figure 3. PID Tuning (Automated Tuning) tab 

  
Figure 4. Step response plot of the Automated PID Tuning 

 
Figure 5. Tunable Root Locus plot (Adjusting the Loop Gain) 

 

5. Result and Discussion  

Table 2. Closed – Loop Step response plot characteristics with 0.1-m high step. 

Properties Values 

Peak amplitude 1.03 

Overshoot 3.35% 

Rise time 0.352seconds 

Settling time 3.95seconds 

Final value 1 
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Figure 3. Closed – Loop Response to 0.1-m High Step 

Description for the above figure. 

From the above results shown on table (2), the design requirement is satisfied. Overshoot is 3.35% which is less 

than 5%. Also settling time is 3.95seconds again less than 5seconds.  
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